Learning Mathematics
in the 21%t Century

ADDING TECHNOLOGY TO THE EQUATION

EDITORS = Elena Arias Ortiz
Julian Cristia
Santiago Cueto

O IDB






Learning Mathematics
in the 21! Century

ADDING TECHNOLOGY TO THE EQUATION

EDITORS Elena Arias Ortiz
Julian Cristia

Santiago Cueto

INTER-AMERICAN DEVELOPMENT BANK



Cataloging-in-Publication data provided by the
Inter-American Development Bank
Felipe Herrera Library

Learning mathematics in the 21st century: adding technology to the equation /
editors, Elena Arias Ortiz, Julian Cristia, Santiago Cueto.

p.cm.
Includes bibliographic references.
978-1-59782-345-6 (Paperback)
978-1-59782-346-3 (PDF)

1. Mathematics-Study and teaching (Elementary)-Latin America. 2. Mathematics-
Study and teaching (Elementary)-Caribbean Area. 3. Educational technology-
Latin America. 4. Educational technology-Caribbean Area. 5. Computer-assisted
instruction-Latin America. 6. Computer-assisted instruction-Caribbean Area.
7. Educational innovations-Latin America. 8. Educational innovations-Caribbean
Area. |. Arias Ortiz, Elena, editor. Il. Cristia, Julidn P, editor. Ill. Cueto, Santiago,
1960-, editor. V. Inter-American Development Bank. Department of Research
and Chief Economist. V. Inter-American Development Bank. Social Sector.

QA14.L.29 A75 2020
IDB-BK-204

Copyright © 2020 Inter-American Development Bank. This work is licensed
under a Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives
(CC-IGO BY-NC-ND 3.0 IGO) license (http://creativecommons.org/licenses/
by-nc-nd/3.0/igo/legalcode) and may be reproduced with attribution to the IDB
and for any non-commercial purpose. No derivative work is allowed.

Any dispute related to the use of the works of the IDB that cannot be settled
amicably shall be submitted to arbitration pursuant to the UNCITRAL rules. The
use of the IDB’s name for any purpose other than for attribution, and the use of
IDB’s logo shall be subject to a separate written license agreement between the
IDB and the user and is not authorized as part of this CC-IGO license.

Note that link provided above includes additional terms and conditions of the
license

The opinions expressed in this publication are those of the authors and do not
necessarily reflect the views of the Inter-American Development Bank, its Board
of Directors, or the countries they represent.

@O0



http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode
http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode

Contents

Preface ... Xi
Acknowledgments . ... . Xiii
AULNOTS . XV

Introduction: Improving Mathematics Education through Technology. .. .1

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

The Development of Mathematical Thinking in Children. .. .17

A Learning Path Framework for Balancing Mathematics
Education: Teaching and Learning for Understanding
and Fluency ... 61

Mathematics Learning in Latin America and
the Caribbean ... ... ... . . . . .. 97

What Are the Main Challenges to Learning Mathematics

Promoting a Good Start: Technology in
Early Childhood Mathematics .......................... 181

Guiding Technology to Promote Student Practice....... 225

Mathematically Open Learning Technologies:
Tools for Student-Centered Mathematics............... 255

Orchestrating Instruction: Coordinating the Use
of Technology with Traditional Math Activities
tolmprove Learning. ... 289



List of Tables

Table 1.1

Table 1.2
Table 1.3

Table 1.4

Table 1.5

Table 1.6
Table 1.7
Table 2.1

Table 2.2

Table 2.3
Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Key Developmental Points to Consider When
Evaluating an Educational Technology or Curriculum

U.S. Common Core Standards

Key Primary School Mathematics Content
Curriculum Areas

Points to Consider When Evaluating Educational
Technology or Instruction Related to
Mathematical Learning

Potential Challenges to Consider When
Evaluating Educational Technology or Instruction

Tools for Supporting the Learning of Mathematics
Key Conclusions and Recommendations

Numbers of Lessons Devoted to Balanced Teaching
Phases in a Japanese Curriculum for Grades
2and5

Uses of Technology Related to Phases of
Balanced Teaching

Summary of Conclusions and Implications

Topics in the Mathematics Area of Numbers
Intended in Fourth and Fifth Grade Curricula in
Selected Latin American and Caribbean Countries

Intended Topics in Select Mathematics Subareas
in Fourth and Fifth Grade Curricula in Selected
Latin American and Caribbean Countries

Curricular Intentions in the Area of Patterns,
Relations, Functions, and Equations in Colombia’s
National Standards

Curricular Intentions in the Area of Patterns,
Relations, Functions, and Equations in The Bahamas

Performance Expectations for Routine Procedures
for Fourth and Fifth Grades in Selected
Latin American and Caribbean Countries

Performance Expectations for Investigating and
Problem-Solving for Fourth and Fifth Grades in
Selected Latin American and Caribbean Countries

iV LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION

25
28

31

42

47
52
53

74

85
92

105

106

108

109

12

13



Table 3.7 Performance Expectations for Mathematical
Reasoning for Fourth and Fifth Grades in Selected
Latin American and Caribbean Countries

Table 3.8 TERCE Country Performance on Sixth Grade
Mathematics

Table 3A1.1 TERCE Sixth Grade Mathematics Performance
Compared with Per Capita GNI

Table 5.1 Conclusions and Implications for Policy and
Practice with Educational Technology in
Latin America and the Caribbean

Table 6.1 Programs that Guide Technology to Promote
Student Practice

Table 6.2 Ten Key Design Decisions

Table 6.3 The 10 Key Decisions Implemented by the
Universidad de Chile Team

Table 7.1 Examples of Mathematics Learning Technologies
and Genres of Mathematically Open Learning
Technologies

Table 8.1 A Guide to Planning an Orchestration

Table 8.2 Requirements for the Different Elements
of Orchestration

Table 8.3 A Sample of Orchestrated Learning Experiences
for Studying Mathematics

Table 8.4 The Effects of Orchestration: A Sample of Studies

Table 8.5 Chapter Conclusions and Policy Implications and
Recommendations

List of Figures

Figure 1.1 Examples of Abstract (Left) and Perceptually
Rich (Right) Manipulatives

Figure 2.1 Math Talk Community: Everyone Focuses on
Making Sense of Math Structures Using Drawings
to Support Explanations

Figure 2.2 Student Solution Methods for a Fraction Problem:

4/7 +2/7

14

131

135

21

227
233

251

271

292

299

301
304

313

47

67

69

CONTENTS

\'



Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.8

Figure 3.9

Phase 2: Relating a Fraction Bar, a Fraction
Number Line, and Fraction Notation

Word Problem Situations and Diagrams for
Addition (top row of panels) and Multiplication
(bottom row of panels)

Start Unknown Solution Approaches for
Single-Digit Numbers

Start Unknown Solution Approaches for
Multidigit Numbers and Fractions

Solution Approaches to an Additive Comparison
Problem, Grades 2 and 3

Visualization and Problem-Solving
TIMSS 2007 Test Question, Sample 1

Performance of Colombian and Salvadoran Fourth
Graders on Test Question in Figure 3.1 (percent)

TIMSS 2007 Test Question, Sample 2

Performance of Colombian and Salvadoran Fourth
Graders on Test Question in Figure 3.3 (percent)

Grades When Common Fractions Are to Be
Introduced: Bermuda versus the Top 70 Percent
of International Peers that Apply the TIMSS

Sixth Grade Mathematics Achievement Averages
in 15 TERCE Countries, Overall and Urban Samples
(mean = 700, standard deviation = 100)

Percentage of Sixth Grade Urban Students by
Mathematics Proficiency Levels

Differences in Sixth Grade Mathematics Achievement
in Urban Schools by Gender, Ethnicity, School Type,
and Socioeconomic Status

Differences in Sixth Grade Mathematics Achievement
in Urban Schools by Gender, Ethnicity, School Type,
and Socioeconomic Status

Sixth Grade Mathematics Achievement by Content
and Cognitive Subdomains (percent)

Vi LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION

73

76

78

79

80
87
98

99
100

100

14

119

120

122

123

126



Figure 3.10

Figure 3.11

Figure 3.12

Figure 3Al.1

Figure 3A1.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8

Sixth Grade Mathematics Achievement in Urban
Schools in Seven Latin American Countries
by Cognitive Subdomain (percent)

Male Advantage in Sixth Grade Mathematics
Achievement in Urban Schools in Seven

Latin American Countries by Cognitive Subdomain
(in standard deviations)

Sixth Grade Mathematics Test Questions 1and 3
Publicly Released by the TERCE

Differences between Lowest and Highest
Socioeconomic Quintiles in Sixth Grade
Mathematics Achievement in Urban Schools in
Seven Latin American Countries by Cognitive Area
(in standard deviations)

Sixth Grade Mathematics Achievement in Urban
Schools in Seven Latin American Countries by
Content Area (percent)

Summary of Predictors of Sixth Grade Mathematics
Achievement in the 2013 TERCE: Inputs and
Infrastructure

Summary of Predictors of Sixth Grade Mathematics

128

129

130

136

136

145

Achievement in the 2013 TERCE: Classroom, School,

and Neighborhood Climate

Summary of Predictors of Sixth Grade
Mathematics Achievement in the 2013 TERCE:
Teacher Background Characteristics

146

147

Equity Comparisons of Selected Variables in the 2013

TERCE in Seven Latin American Countries

Equity Comparisons of Selected Variables in the
2013 TERCE in Seven Latin American Countries

Examples of Mathematics Content Questions from
Panama and Costa Rica

Pedagogical Content Knowledge Example Item 1
Pedagogical Content Knowledge Example Item 2

Summary of Time Use in Classrooms, Selected
Latin American and Caribbean Countries (percent)

149

150

154
156
157

162

CONTENTS

vii



Figure 4.9

Figure 4.10

Figure 4.11

Figure 4A1.1

Figure 4A1.2

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5
Figure 6.1

Figure 6.2

Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4
Figure 7.5

Figure 8.1

Flow of Commonly Observed Lessons: Low versus
High Effective Class Archetypes

Summary of Predictors of Sixth Grade Mathematics
Achievement in the SERCE-TERCE: Classroom
Teaching Processes and Conditions

Summary of Predictors of Sixth Grade Mathematics
Achievement in the SERCE-TERCE: Technology
Availability and Usage

Mathematics Content Knowledge of Future
Mathematics Teachers (scale)

Equity Comparisons of Select Variables on the
SERCE (2006) and TERCE (2013) for Seven
Latin American Countries

Samples from a Learning Trajectory for the
Composition and Decomposition of Geometric
Shapes

Learning Trajectory for Counting

“Mystery Pictures” Sets the Foundation for a
Learning Trajectory in Geometric Composition

The “Free Exploration” Environments of
Dinosaur Shop

Practice Programs for Addition

Exercise in Which Students Need to Compare
Fractions

Exercise in Which Students Develop Number Sense
about Fractions

Two Views of the Teacher’s Canonical Triangle

Students’ Proposed Constructions of an
Isosceles Triangle

Counting Operations in TouchCounts
Students Count by Threes

Skip-Counted Tokens Arranged into an Area Model
of (n x 3) Multiplication

Training and Coaching Model Based on the
Experience of Implementing Orchestrations
in Colombia

Viii  LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION

164

168

170

173

174

188

191

199

201
202

236

237
261

262
265
266

267

297



Figure 8.2 Process of Adopting Technology

Figure 8.3 Training and Coaching Model Based on
the Orchestrations in Colombia

List of Boxes

Box 2.1 The Three-Phase Balanced Teaching Model

309

310

64

CONTENTS

ix






Preface

t is the year 2020, and in Latin America and the Caribbean, 154 million

students are learning from home, their schools closed because of Covid-

19. Overnight, teachers with 20 or 30 years of experience have had to
learn how to teach virtual classes. Along with them, all actors in the educa-
tion system have had to make a leap towards online education, revealing
the low level of technology integration and gaps in student access to con-
nectivity and devices at home.

Outside the region’s classrooms, the world has been undergoing
intense technological ferment for years. While teachers and students in
our countries adapt to their new digital environment, an army of robots
dances without music in Baltimore, U.S., preparing orders that just arrived
over the Internet at one of Amazon’s 177 distribution centers. At the same
time, in Cologne, Germany, a group of computer science experts are put-
ting the final touches on a new version of the Deepl translation engine,
which is revolutionizing the field of artificial intelligence-based translation.
Meanwhile, in Zhongwei, China, the sun is rising on 43 square kilometers of
solar panels located in the Tengger desert, which produce enough energy
to meet the needs of millions of people.

Technological developments are revolutionizing markets for goods,
services, and energy worldwide. The big question is, how will these techno-
logical changes affect labor markets? Experts differ in their views, but they
do tend to converge on one central policy recommendation: It is crucial to
prepare present and future generations for the changes being brought by
the fourth industrial revolution, which is already underway.

In Latin America and the Caribbean, the good news is that educa-
tion has improved notably in recent decades, moving from low levels of
access and high levels of illiteracy to almost universal basic education
and increasing access to higher education. However, time and again, it
has been found that school attendance does not necessarily mean acqui-
sition of knowledge and basic skills. National, regional, and international

Xi
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evaluations of student learning have found that in many countries of the
region, at least half of students cannot understand a simple text or solve a
basic math problem. This is clearly a problem in itself, but these deficien-
cies also make it harder to develop the 21st-century skills people need to
act as committed citizens and efficient workers in the new economic and
social environment.

In this context, the mandate for education ministers in the region is
two-fold: First, they need to resolve the learning crisis in traditional areas
like mathematics. Second, they must promote new ways of teaching and
learning to develop the critical skills people need. The key questions that
emerge are how should children learn mathematics? What are the new
teaching practices that foster the development of mathematical thinking
among students, rather than simply transmitting knowledge? What are
the areas where our region faces its biggest challenges? Which models
for technological innovation seem most promising? This book addresses
these and other questions with the aim of offering a roadmap for countries
wishing to use technology in education effectively.

These issues are even more relevant in the current context of the
Covid-19 pandemic. In order to educate our young people despite their
confinement and get them the knowledge they will need in the labor market
of the future, the new mandate is to accelerate the digital transformation
of our education systems guided by evidence. Developing effective hybrid
education models—part-time at home, part-time in the classroom—for the
months following reopening will be crucial for keeping their learning apace
while we look for a permanent solution to the health crisis. Progress in this
regard would contribute not only to improving learning but also to pro-
moting more robust and flexible education systems.

Marcelo Cabrol
Manager of the Social Sector
Inter-American Development Bank

Eric Parrado

Chief Economist and General Manager of the Research Department
Inter-American Development Bank
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Introduction:
Improving Mathematics
Education through Technology

Elena Arias Ortiz (Inter-American Development Bank),
Julian Cristia (Inter-American Development Bank),
and Santiago Cueto (GRADE and Pontificia Universidad Catdlica del Perd)

he nascent 21st century has already seen an explosion of techno-

logical changes, sparked in particular by rapidly increasing access

to broadband Internet. These changes are opening up opportuni-
ties in areas such as industry, trade, the media, and health. Innovations in
information and communications technology (ICT) have prompted par-
ticular interest in the education sector. In the countries of Latin America
and the Caribbean (LAC), this interest has materialized in substantial pub-
lic investments to increase student access to computers and the Internet
in order to improve educational outcomes. Investments in such technol-
ogy are also often aimed at decreasing or eliminating the “digital divide,”
which refers to the gap between those with and without access to tech-
nology. Researchers suggest that there is another level of this gap that
involves not only access but also the skills learned to use technology (Sun-
kel, Trucco, and Espejo 2013).

In principle, using technology can significantly enhance the educa-
tional process by increasing student motivation, personalizing instruction,
facilitating group work, enabling immediate feedback to students, and
allowing for real-time monitoring by teachers and other actors.! However,

Note that there are many other uses of technology in education, including improving
school and educational system management. For example, technology can be used
to maintain updated student registries (including personal information, recording
of grades, and daily attendance), information about teachers, status of equipment,
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the large investments in technology in the education sector in LAC have
been the subject of heated debate. There is a gulf between the expected
impact of technology and the actual results. Indeed, the few rigorous eval-
uations conducted to date suggest that many educational technology
programs have had limited effects on student learning (Lubin 2018).

A typical example of the mismatch between promise and reality is the
One Laptop per Child (OLPC) Program, which sought to improve educa-
tion in the poorest regions of the world. The program was implemented
worldwide but was especially popular in LAC. In fact, about 80 percent
of the 2.4 million laptops distributed worldwide under the program were
distributed in the region. In Uruguay, for example, all students in the coun-
try received a laptop under the program. Peru also participated, with over
800,000 laptops purchased. Unfortunately, a rigorous, large-scale evalu-
ation of the OLPC Program in Peru showed that, although the program
had some positive effects on general cognitive skills and digital skills, it did
not have measurable effects on mathematics or reading comprehension,
which had been one of the government’s objectives (Cristia et al. 2017).

The public discussion generated by Cristia et al. (2017) reveals a strong
demand among governments and other stakeholders for high-quality evi-
dence. In particular, people want to know how educational benefits from
technology can be increased. Cristia and his colleagues used surveys of
students and teachers, computer logs, and a parallel qualitative evaluation
to show that the lack of academic results can partly be explained by the
limited use of computers in activities directly related to mathematics learn-
ing and reading comprehension.

There are few rigorous evaluations of other large-scale programs
in LAC, leaving open the question of how far technology investments
improve academic outcomes in the region. Indeed, pioneering national
ICT and education programs, such as Enlaces in Chile and Plan Ceibal in
Uruguay, have made great strides toward closing the digital gap in their
countries.2 However, evaluations of how the various components of these

and communications between schools, parents, and other educational institutions,
including the Ministry of Education. However, the analysis of these and other poten-
tial uses goes beyond the scope of this book. For more information on the digital
transformation of education management, see Arias Ortiz et al. (2019).

Enlaces, the Center of Education and Technology of the Ministry of Education, was
launched in 1992 to further educational quality in Chile by (1) improving access to
technology in public schools, (2) training teachers in the use of ICT in the classroom,
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ICT programs affect student learning are scarce. Although national poli-
cies to support ICT in education may not have a direct impact on students’
learning achievement in their early phases, it is crucial to establish a causal
effect given the significant investments involved. Moreover, evaluations
offer important lessons that may be used to improve the design of pro-
grams across the region.

One review of educational technology evaluations (Arias Ortiz and
Cristia 2014) sheds light on this debate. In particular, this review found that
programs that clearly guide participants on how to use the technology
resources at hand foster better academic outcomes than those that do not
guide technology use. A program is considered as “guided” if it specifically
defines the target subject, the software to be used, and the weekly dura-
tion of use. That is, a guided program clearly defines the three “S”s: subject,
software, and schedule. In contrast, “nonguided” programs provide access
to technological resources, but the user (teacher or student) must define
the learning objective, the software involved, and the frequency of use.

By this definition, the OLPC Program in Peru was nonguided. Through
this program, the government of Peru aggressively distributed personal
laptops to students in primary schools in rural areas. Teachers were trained
for one week but received little guidance on how to integrate computers
into pedagogical practices. In contrast, in a program implemented in
primary schools in India (Banerjee et al. 2007), students used computers
for two hours every week, the difficulty level of mathematical exercises
was personalized, and the program generated significant improvements in
students’ mathematics achievement.

The effects of guided programs also vary across a wider range of
outcomes than do the effects of nonguided programs (Arias Ortiz and
Cristia 2014). That is, while some guided programs generate large posi-
tive effects, others generate few or even negative effects. This dispersion
suggests high returns from experimenting with different models of guided
programs to identify the most effective ones. Moreover, the review also

and (3) helping students develop 21st century skills. Plan Ceibal was created in 2007
to support Uruguayan education policies through technology, with the aim of foster-
ing inclusion and equal opportunity. Since its implementation, every child who enters
the public education system throughout the country has been able to access a com-
puter for personal use with a free Internet connection from the school. In addition,
Plan Ceibal provides a host of other services, including educational resources and
teacher training. Recent initiatives by Plan Ceibal seek to support student learning
more directly and use evaluations to guide decision-making. In particular, the Inter-
American Development Bank approved a $30 million loan to Plan Ceibal in 2017 to
enhance student learning in basic education by promoting better use of technology in
the classroom, the creation of digital educational content, and the training of teachers.

INTRODUCTION: IMPROVING MATHEMATICS EDUCATION THROUGH TECHNOLOGY
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documents that guided programs are among those educational pro-
grams with the greatest impact on academic achievement, proving the
great potential of technology to improve student learning. This is particu-
larly true in the case of mathematical skills, where the effects seem to be
greater than for reading comprehension.

However, in spite of the limited evidence of effective technological
programs that have been implemented on a large scale, it should be rec-
ognized that technology in general and computers in particular are here
to stay. The technological changes of the 21st century require that young
people leaving the education system have mastery of several key technol-
ogies to perform well in the labor market. As the presence of computers
and the Internet becomes increasingly integral to the education process,
governments will continue to invest in it. The question of how to use tech-
nology in a cost-effective fashion is thus of utmost importance.

At the same time, it is important to highlight the major educational
challenges faced by the countries of LAC. To start with, average levels of
academic achievement are low across the region (Bos et al. 2016a). This
is problematic, because weak average performance on standardized tests
has been clearly linked to poor economic performance at the country level
(Hanushek and Woessmann 2009, 2012). On top of that, there are large
skill gaps between individuals from low- and high-income households and
from urban and rural areas (see Chapter 4).

Mathematics is a particularly critical learning area, and most students
in LAC do not attain the most basic levels of proficiency. Overall, students
in the region display a low level of performance in math, reading, and sci-
ence, and, of the three subjects, their performance in math is consistently
the worst. Sixty-three percent of 15-year-old students in the region have not
reached a level 2 (basic level) of proficiency in math, compared with 50 per-
cent in science and 46 percent in reading (Bos et al. 2016b). Yet mathematics
proficiency is critical to occupations in science, technology, and engineer-
ing, which are expected to be in increasing demand in the coming years.

Against this backdrop, this book seeks to answer one question: how can gov-
ernments in Latin America and the Caribbean improve mathematics learning
using technology? To answer this question, the book identifies, reviews, and
synthesizes knowledge relevant to designing education programs that uti-
lize technology to improve mathematics learning in primary schools in the
region. Around the world, researchers, policymakers, and practitioners have

LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION



been experimenting and generating knowledge about effective ways to use
technology to enhance mathematics learning. Unfortunately, this knowl-
edge is dispersed in a multitude of studies and reports, known only by a
range of specialists from the education, economics, psychology, and com-
puter science fields. By describing in detail promising programs and policies
that incorporate technology into the classroom, and analyzing their impact,
this book provides a deep and hopefully useful review of the state of the art,
especially relevant for directors of technology and their technical teams in
education programs in LAC, for education specialists from multilateral orga-
nizations and nongovernmental organizations, and for other actors involved
in the implementation of projects in this area.

In preparing this book, a major challenge was quickly recognized: effec-
tive programs may vary by grade level and context. For example, programs
that may be effective in primary education may not work well in second-
ary education. Also, programs that may work well in urban areas may be
less effective in rural areas. This study focuses specifically on programs that
foster mathematics learning in primary schools in urban areas of LAC.

Analyzing primary education is critical to help countries improve the
educational outcomes of disadvantaged students who frequently lack the
basic skills necessary to attain secondary and higher levels of education.
Indeed, evidence suggests that policies to expand primary education in
LAC have been successful: enrollment is now nearly universal. Yet the qual-
ity of education remains low (Ganimian and Murnane 2016). Exploring in
depth how educational technology can best address this challenge will pro-
vide a great opportunity for countries in the region to leverage the use of
recent investments that expand technology access at the primary level. This
book’s focus on mathematics has a further advantage: learning expecta-
tions in math, as expressed in national curricula and international evaluation
frameworks, are quite similar across countries in the region and worldwide,
facilitating the adaptation of solutions from one country to another.

The book focuses on urban areas, as LAC is a highly urbanized region
and hence the vast majority of students are concentrated in cities. How-
ever, while examining effects on the largest number of people makes good
sense for policy, the limited scope of this book will, it is hoped, be expanded
by future studies of rural areas. Many of the lowest-achieving students in
the region live in rural areas. These students face significant educational
challenges linked to their socioeconomic characteristics (e.g., poverty and
ethnicity) as well as lower and unequal access to infrastructure and public
resources (e.g., electricity and the Internet).

Finally, throughout the book, the meaning of the word “technology” is
restricted to computers (desktops, laptops, netbooks) and tablets. These
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are powerful tools that facilitate a variety of possible ways to search and
process information. The technological tools commonly used in distance
education programs, such as television and radio, do not foster such rich
interactions among students and teachers, and thus are not included in the
analysis in this book.

This book is divided into two parts. The first, which includes Chapters 1to
4, aims to document the main challenges to mathematics learning in Latin
America and the Caribbean. In particular, these chapters seek to identify
effective instructional processes that are important to learning but not
prevalent in the region. In other words, the first part of the book intends to
provide a thorough diagnosis of the main challenges to mathematics learn-
ing in the region. The second part of the book, which includes Chapters 5
to 8, highlights how these processes can be potentially strengthened using
technology, and describes the main types of programs or models of tech-
nology use that are relevant to the instructional challenges in mathematics
that LAC faces today. The models presented in this second part have the
potential to produce large effects on mathematics learning. Effects on
socioemotional outcomes such as motivation, attitudes, and teamwork
skills will also be considered as potential mediating factors to gains in aca-
demic achievement in mathematics.

The paragraphs below briefly summarize the contents and main
ideas of each chapter. Most chapters include a summary of policy
recommendations in their final section.

In Chapter 1, Lindsey E. Richland, Kreshnik N. Begolli, and Emma Nas-
lund-Hadley synthesize educational research to provide a definition and
key aims for mathematical proficiency in the 21st century. The chapter
provides a solid theoretical foundation for the book by outlining key devel-
opmental changes in children’s mathematical thinking over time, and by
providing a contemporary definition for mathematical proficiency. The
authors highlight how children’s minds are uniquely ready to develop
mathematical concepts, but also how instruction adapted to their age and
background knowledge will have the greatest impact. The main message
for educators is to design programs in which instruction and technology
are based on how children think, rather than on pedagogical techniques
per se. While this sounds straightforward, what the authors describe here
implies a major shift in orientation, away from focusing on instruction (that
is, what the teacher or technology is doing), to focusing on how to best
respond to and foster children’s thinking.
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The chapter also provides a guide for how to use standards to reach
developmental goals in mathematics. Learning standards provide common
norms for everyone involved in the decision-making process of design-
ing and implementing mathematics educational technology. The chapter
considers the example of educational reforms in the United States and
the development of high-quality standards for mathematical proficiency
throughout primary school, which are known as the U.S. Common Core
State Standards for Mathematics (CCSS Initiative 2010). This experience is
relevant to LAC because many countries there are still advancing in this
area. Throughout the chapter, the authors argue that the effectiveness of
technology in education programs will critically depend on how its use helps
children build key foundational skills and overcome learning challenges.

Building on the case made in the first chapter about the importance of
mathematical proficiency in the 21st century, Aki Murata, Karen C. Fuson,
and Dor Abrahamson provide a framework in Chapter 2 for understand-
ing how teachers can help students develop understanding and fluency in
mathematics. The balanced teaching framework discussed in the chapter
offers a three-phase model for how teachers can help their students’ prog-
ress from (1) exploration to (2) understanding to (3) fluency in each new
math topic. Phase 1 aims at developing mathematics structure and sense-
making by encouraging students to use their intuition to explore new
concepts. In phase 2, the heart of the process, the class engages in dis-
cussion as students talk through their mathematical reasoning processes,
with the help of visual supports. Once a certain level of understanding is
reached, teachers introduce formal methods and seek to develop mathe-
matical fluency in phase 3.

The chapter presents an alternative view to the dichotomy between
traditional instruction that has emphasized procedural fluency and prac-
tice versus new trends that promote children’s exploration. The authors
highlight connections between different types of student thinking and
visual representations to illustrate a learning process that moves through
the three phases and uses “math talk” to support the connections.? Finally,
the authors outline the advantages of using technology to support bal-
anced teaching by describing how it can guide national decisions about
teaching and learning, including choices regarding what type of technolo-
gies to use and consideration of those that are already available.

5 As explained by the National Council of Teachers of Mathematics, “math talk” is

an instructional conversation directed by the teacher, but with as much student
engagement as possible. The idea behind it is that if students take time to explain
their mathematical thinking, this will increase their understanding.
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After this review of effective instructional strategies, Gilbert A.
Valverde, Jeffery H. Marshall, and M. Alejandra Sorto provide a detailed
assessment in Chapter 3 of the mathematical content that children in
LAC know, using available standardized test results and contrasting these
results with the goals set by national curricular policies. The authors rely
on data from the Trends in Mathematics and Science Study (TIMSS), an
international student assessment, and the Third Regional Comparative
and Explanatory Study (Tercer Estudio Regional Comparativo y Explicativo
- TERCE), a regional student assessment. In addition, original data on
national curricula from the University at Albany’s International Curriculum
and Textbook Archive are used. These data include the topics outlined in
an intended curriculum for primary school mathematics (and reading) in
developing countries, defined as the official expectations regarding math-
ematics learning promoted by ministries and national education agencies.

What do data and research findings in LAC tell us about the current
status of student achievement in mathematics education? The authors show
that students in the region have consistently low to average achievement
in mathematics compared with students from other regions of the world.
Evidence from regional student assessments also suggests that average
levels of mathematics achievement are seriously low across LAC. According
to the TERCE, student performance in third-grade mathematics was
critically low (UNESCO-OREALC 2016), even in content areas specifically
covered in national curricula. The authors also find evidence of persistent
gaps in educational attainment between subpopulations of students—
inequality that favors urban students and those in private schools.

Finally, the authors find gaps in national mathematics curricula across
LAC. Missing as an explicit goal in some cases is knowledge of key con-
tent such as integers, rational and real numbers; proportionality problems;
patterns, relations, and functions; and the performance of mathematical
reasoning. The authors consider these gaps cause for concern: unless these
topics are explicitly addressed in a national curriculum, few students will
have the opportunity to learn them. Beyond curricular policy, the authors
discuss persistent structural and implementation factors that require atten-
tion. Indeed, in even the highest-achieving countries where key content
knowledge is covered in the class curriculum, most students can solve only
the most routine problems, and at the lowest levels of cognitive demand.

In Chapter 4, Jeffery H. Marshall and M. Alejandra Sorto explore which
inputs and classroom practices are associated with the highest academic
achievement, using databases from the TERCE as well as the Second
Regional Comparative and Explanatory Study (Segundo Estudio Regional
Comparativo y Explicativo - SERCE). The authors review empirical studies
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describing the educational opportunities available to children in particu-
lar countries or locales. In particular, they analyze three factors: (1) school
and teacher observable characteristics, (2) teacher capacity or knowl-
edge, and (3) teaching processes. Their results reveal that there is a major
difference between what an effective mathematics class should look like
and what classrooms actually look like in LAC. Significant deficiencies in
teaching and learning environments exist: teachers exhibit low levels of
pedagogical content knowledge and students spend much time memo-
rizing and applying algorithms instead of engaging in high-level cognitive
tasks. In addition, large gaps in inputs and classroom practices are doc-
umented between schools attended by low- and high-income students.
Moreover, few classrooms report using manipulatives, pointing to a lack
of materials. In summary, classrooms in the region depend on lessons with
low cognitive demand that do not challenge students to really learn math-
ematical concepts in a profound way to achieve proficiency.

What explains the general lack of quality observed in primary school
mathematics classrooms across the region? The authors identify and ana-
lyze various factors, including limited teaching materials, little support
for students outside the classroom, and inadequate mathematics knowl-
edge among teachers. In this context, computer-assisted learning could
help both students and teachers. Yet, the authors warn about the dangers
of a simplistic reliance on technological solutions that will not automati-
cally improve learning. Mathematics classrooms in LAC need to expose
students to learning tasks that promote reasoning and thinking, and tech-
nology can serve as a catalyst for reaching this goal but should not be a
goal in itself.

Based on the challenges identified in the first part of the book, part two
provides concrete models of how technology can be used to improve
mathematics learning in Latin America and the Caribbean. The goal is
to identify programs that are effective—or at least promising, given their
design features—in improving mathematics learning in primary school. To
do this, Chapter 5 analyzes alternative models of technology use up until
the second grade. Chapters 6, 7, and 8 analyze the potential uses of tech-
nology for mathematics learning between the third and sixth grades.

In Chapter 5, Julie Sarama and Douglas H. Clements provide an
overview of models for learning mathematics using technology between
pre-primary years and the second grade, including technology-assisted
instruction that encourages students to practice in order to gain fluency;
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tutorials and learning games; technology-enhanced management tools to
track children’s progress and individualize instruction; and technology-
based manipulatives that encourage cognitive play.

Their theoretical foundation is based on learning trajectories that offer
a conceptual framework for constructive-based learning and teaching.
Each learning trajectory has three parts: (1) a goal, (2) a developmental
progression, and (3) instructional activities. In this framework, to attain
mathematical competence in a given mathematical topic or domain (the
goal), students master each successive level (the developmental progres-
sion), aided by tasks (instructional activities) that facilitate thinking at that
level. The authors describe how technology can make substantial contri-
butions to early childhood mathematics education if their applications are
consistent with expected learning progressions.

The authors also discuss the requirements of teacher training and the
resources needed for these models to be successful in LAC. For example,
although the benefits of computer programming are promising, especially
in an increasingly complex technological age, there are significant require-
ments for the effective use of coding. If hardware is scarce and teachers
have not received considerable professional development and support,
this may be an unproductive and frustrating model to implement. In con-
texts of limited resources, the authors recommend simple applications,
such as technology-assisted instruction tutorials and practice applica-
tions explicitly aligned to extant standards (goals) and curricula. But even
for these simpler applications, teachers must receive training and in-class
support, and the software chosen must fulfill certain requirements such
as moving children through learning trajectories, featuring introductory
exploratory activities, and including technological manipulatives.

In Chapter 6, Roberto Araya and Julian Cristia analyze guided
programs that seek to promote student math practice. These types of pro-
grams involve students performing exercises on computers and promote
student engagement through games and tournaments to motivate chil-
dren to practice. This type of model can be implemented to supplement
regular mathematics instruction, and it does not require close coordination
between technology-based and traditional instructional activities. Building
on the experience of a pilot project in Santiago, Chile, the chapter analyzes
10 key design decisions that maximize impacts. These design decisions
center on clearly defining the objective of the program (i.e., which math-
ematical skills will be developed), how computers are expected to be used
during the technology sessions, and which inputs are directly provided
by the program, including how teachers and lab coordinators are to be
trained and supported. For each of these key decisions, different options
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are analyzed using theoretical arguments and empirical evidence, and also
taking into account the actual choices made in a number of effective pro-
grams that guide use and are focused on promoting student practice.
Two main findings emerge from the analysis presented in the chapter.
First, many of the analyzed decisions involve difficult trade-offs that need
to be considered but which, a priori, may not be recognized. To make deci-
sions regarding how to tackle these trade-offs it is important to analyze
potential options in a careful manner considering not only the potential
benefits of each option but also the potential challenges to be faced dur-
ing implementation. Second, the decisions to be made when designing
these models should make sense when considered not only in isolation,
but also in conjunction with all the other decisions made. That is, the chap-
ter emphasizes the critical need to ensure coherence across design.
Chapter 7 is devoted to analyzing a comprehensive model that empha-
sizes the comparative advantage of technology in the visualization and
exploration of complex mathematical concepts. In this chapter, Nicho-
las Jackiw discusses in detail mathematically open learning technologies
(MOLT) that engage students in the active pursuit and construction of
knowledge of mathematics topics and best practices that can be used
across grades. These technologies are defined by three characteristics:
(1) a student-centric design and user model, (2) an open-ended activity
structure, and (3) an innovative application of technology to mathematical
representations and practices. Two practical experiences are highlighted:
dynamic geometry manipulatives and mathematically embodied number
environments. The chapter recommends that policymakers focus on the
professional development of teachers (in mathematics and pedagogy more
than in technology) as well as on incrementally staged implementations to
effectively adopt mathematically open learning technologies at scale.
Finally, in Chapter 8, Ana Diaz and Miguel Nussbaum review the con-
cept of orchestration within the context of teaching mathematics using
technology. Orchestration is the coordination of pedagogy, curriculum,
and technology in a student-focused setting. The authors argue that chil-
dren are not learning and that computers in education systems are not
being used effectively because there is a lack of pedagogical support
for teachers to integrate technology and student needs into their teach-
ing practices. Thus, to implement the use of technology in the classroom,
under the orchestration model teachers are provided with a detailed set of
guidelines for how to implement new teaching strategies.
An orchestration can either be provided from the outside, or developed
internally by schools, but in both cases certain social and infrastructural
conditions need to be met to help teachers overcome the challenges they
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face. A series of guiding questions and a diagnostic of a school’s specific
context can help school communities develop their own orchestrations.
Lessons can either be completely or partially orchestrated, depending on
the teacher’s tools, knowledge, and skills. The authors demonstrate that an
orchestration can be an effective tool, not only when teaching mathemat-
ics, but also in other areas of the curriculum.

In summary, the analysis presented in this book underscores some of
the options that policymakers and educators can explore when deciding
which educational technology model to implement in a specific context.
Thus, instead of generating a one-size-fits-all recommendation for how to
incorporate computers into mathematics lessons, the book’s authors con-
sider several program models that have been found to impact teaching
practices and, hopefully, students’ knowledge and mathematical thinking.
Based on the discussions, materials, and references presented in this book,
effective programs are seen to have several key characteristics:

1. Technology, including access to computers and Internet, is not the main
objective but merely an instrument used to introduce effective peda-
gogical practices that can build students’ mathematical knowledge and
thinking. Technology is not here to replace teachers.

2. All the models require that teachers receive considerable professional
development and training to be successful. In particular, it is critical that
teachers be guided in the pedagogical use of technology, and not only
in operating the equipment, in order for a program to be effective.

3. Computers do not need to be provided to each student; physical
resources can be shared.

4. Programs need to be adapted to the context of the school and the
education system in which they will be implemented. For example, in
contexts where teachers’ experience or skills with technology is lim-
ited or where infrastructure conditions are not ideal, relatively simple
approaches need to be implemented.

5. Successful programs require that local stakeholders, including school
principals and teachers as well as parents and students, have a positive
attitude about the program in order to foster and follow through on its
implementation, overcoming sometimes inevitable constraints or criti-
cisms that often arise when a program begins.

6. A support system for schools is needed to solve any problems with
operating, fixing, or replacing equipment, gaining access to the Internet,
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and providing pedagogical support about the resources available and
how best to use them locally.

7. Interventions requiring technology need to be aligned with other inter-
ventions at the national or regional levels, including curriculum and
teacher policies (both pre-service and professional development), as
well as other interventions in other sectors (in particular, school infra-
structure and access to electricity and the Internet).

Hopefully, these design principles and the lessons presented in this book
will contribute to better policy decisions regarding how to use technology to
enhance mathematical learning in Latin America and the Caribbean. Coun-
tries in the region have made large investments in educational technology,
and access to computers and tablets is widespread across urban pub-
lic schools. It is important to design and implement models that can make
effective use of available technologies, generating significant benefits at a
low cost. Moreover, governments in the region are increasingly receptive to
evidence as an input into policy decisions, especially when it can inform how
to optimally structure a program, rather than decisions related to whether
or not to launch a program in the first place. However, there have been
examples of governments in the region embarking on massive access to
technology programs only to realize later on that these programs were not
fully developed in their aims and procedures (e.g., no theory of change for
the program) or that they did not have sufficient professional or monetary
resources to implement them over time. As suggested earlier, it is critical to
have efficient systems to monitor the implementation of programs and have
plans for qualitative and quantitative evaluations embedded in the design
of the intervention. However, this has often not been the case in the region.

Multilateral organizations like the Inter-American Development Bank
(IDB) promote the use of evidence in operational and policy dialogue,
hence there are clear channels to disseminate the generated knowledge.
The IDB expects to remain a relevant actor in this area and to continue
supporting a network of specialists in the development, implementation,
evaluation, refinement, and scaling-up of interventions using technol-
ogy to improve mathematics learning (and eventually other areas). Thus,
this book can be considered an additional step in a comprehensive and
ongoing initiative involving multiple actors and views from different dis-
ciplines such as psychology, education, and economics, and drawing on
experiences from regions around the world that can provide multiple and
complementary perspectives. The ultimate goal is that these concerted
efforts contribute to making the promise of technology in education a real-
ity for all students in Latin America and the Caribbean.
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CHAPTER H

The Development of
Mathematical Thinking in Children

Lindsey E. Richland (University of Chicago), Kreshnik N. Begolli
(Temple University), and Emma Néslund-Hadley (Inter-American Development Bank)

he aims for mathematical proficiency in the 21Ist century have

changed, leading to educational reforms in mathematics educa-

tion around the world. Economic success increasingly depends on
building a workforce of mathematically proficient students able to apply
learned mathematics to real-world problems, and to innovate, think cre-
atively, and adaptively participate in continually shifting economies. This
type of mathematical proficiency requires a more conceptual, flexible
understanding of mathematics than is traditional in classrooms in Latin
America and the Caribbean (LAC)—and it is argued that the lack of such
an understanding has direct economic consequences (Hanushek and
Woessmann 2012). Educational reforms are thus essential. They are also
challenging, since most educators tend to teach the way they were taught,
and students’ parents are often uncomfortable with new instructional
modes. Reforming mathematics instruction involves a major cultural shift
both in the aims for student learning (i.e., deciding what counts as math-
ematical proficiency) and in the pedagogical techniques used to teach
mathematics.

This chapter synthesizes a large body of mathematics educational
research to provide educators and administrators in LAC with broad infor-
mation about how children’s mathematical thinking develops, a framework
for mathematical proficiency goals for the 21st century economy, and key
ideas to consider when adopting educational technologies to support
mathematical thinking.

The chapter begins by describing how children’s developing brains
make them open and ready to learn mathematical concepts, and also how
instruction (via both teachers and technology) must consider the ways that

17



18

children might need additional support due to their age or background
knowledge. At the same time, anxiety and feelings of pressure—or discrim-
inatory stereotypes—may contribute to serious achievement gaps, such as
those observed among students in LAC. These stereotypes may lead girls
or children from minority backgrounds to learn less, or to perform below
their actual ability on tests, due to social perceptions that these popu-
lations are poor at math. Throughout the chapter, tables summarize key
points that, while not exhaustive, constitute some of the primary curricular
and brain developmental considerations to keep in mind when evaluating
educational technology or instruction.

The chapter revolves around a key message: that the blueprints used
to design instruction and tools should be based on how children think,
rather than on pedagogical techniques per se. While this sounds straight-
forward, it actually represents a major shift in orientation away from
focusing on instruction and on what the teacher or technology is doing,
to focusing on how best to respond to and foster children’s thinking. This
means organizing instruction around what children already know, what
their minds are ready for, and how they may be feeling at the moment
(e.g., anxious, curious, engaged, or bored). The successes or failures of
mathematics education and the way educational technology is selected
and implemented thereby relies on an ability help children build key foun-
dational skills and overcome challenges.

A Conceptual Understanding of Mathematics

From early infancy, children’s minds interpret the world through quantities,
space, shapes, and patterns—the building blocks of complex mathematical
thinking. Children do this naturally. For example, most babies pay attention
to quantity and small number sets before they can walk or talk (Dehaene
1997; Gallistel and Gelman 1992; Lipton and Spelke 2003). Thus, despite
the fact that many school-age children—and adults—harbor feelings of
discomfort with mathematics, mathematical thinking is an innate part of
human life.

Children’s minds are biologically organized in a way that allows them
to do mathematics, but they cannot learn more than basic quantity com-
parisons without instruction. Their environment for learning mathematics
matters dramatically, and there is much that must be explicitly taught. For
children to participate in higher-level mathematics, they must connect
their early mathematical thoughts with mathematical symbols, such as
numbers and operators. This is the first hurdle children face when learning
formal mathematics, and one that is of fundamental importance to their
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ability to reason using mathematical calculations, and to think in terms of
mathematics instead of seeing it merely as a set of abstract principles to
be memorized for a future test.

How are children first introduced to mathematical symbols? And how
is their use of these symbols tested? This chapter argues for a new defi-
nition of mathematical proficiency, a definition that goes beyond simply
ensuring that children know the correct answers to problems to ensur-
ing that they do so with understanding. Consider the following problems
(adapted from NRC 2009) as an analogy to how a child might learn to use
number symbols that have been memorized as a list, rather than as a set
of quantities.

Use the alphabet to solve the following problems (e.g., A= 0, B =1, etc.):

1. Count onward from “J”

2. F+D=__7

3. ExC=_7"

4. How many fingers is “H”?

Despite our understanding of what it means to add, subtract, multi-
ply, or compare quantities, and our easy knowledge of alphabetical order,
the novelty of using these alphabetical symbols in that way significantly
compromises our ability to solve these problems. This example demon-
strates how challenging mathematics can be if it is known only as a set of
rules that must be memorized. In the same way that many of us struggle
with the use of alphabetical symbols to solve math problems, encouraging
children to memorize the sums or products of calculations may lead them
to simply answer particular questions correctly. But without first ensur-
ing their understanding, it will mean that more complex calculations are
just as awkward and abstract to think through. Part of the challenge for
teachers is to recognize that for their own more developed understanding
of mathematics to be shared by students, the teachers must ensure that
students develop a deep sense of numbers, grounded in concrete expe-
rience, before they are taught how to manipulate numerical symbols in
more abstract ways.

Traditional mathematics instruction has expected students to mem-
orize procedures and follow rules to manipulate these symbols without
providing conceptual connections to quantity, shape, space, or pat-
terns. Teachers may have learned these symbols so well that they do
not realize what a challenge it is for students to make these connections.
Their expectation is that by getting students to practice using proce-
dures, symbols, or rules, the students will make the connections needed
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to solve everyday problems. Unfortunately, students instead often begin
to view mathematics as a discipline comprised of computations within
a set of disconnected procedures and rules that need to be memorized.
While highly practiced fluency with mathematical symbols together with
procedures and rules is essential for developing complex mathematical
thinking, the ability to compute procedures quickly is not the same as
mathematical proficiency.

Children must develop an understanding of mathematics that is con-
nected to an internal model of quantity, and that enables them to reason
through mathematical ideas generatively and in new ways, rather than
memorize a set of disconnected rules. To accomplish this, they must under-
stand mathematics as a discipline based on thinking and problem-solving
(not just memorization), and mathematical concepts must be presented
to them in a holistic, integrated manner (rather than as a list of sepa-
rate, disconnected topics). This will provide them with the fundamentals
needed to solve problems across employment sectors, and for a wide
range of purposes, from accounting and financial management to policy
decision-making (based on data) and programming technology. Thus, it is
important that educational technology decisions begin with a clear defini-
tion of mathematical proficiency: namely, what do we want our students to
know when they enter the workforce?

The next section describes the development of children’s mathemati-
cal and cognitive skills in order to provide a framework for thinking about
how to support mathematical proficiency over time.

How Children Learn

Instruction throughout primary school must consider children’s develop-
ing minds; it must be age-appropriate and build on children’s growing
capacity. Piaget (1970, 1977) revolutionized child development research
with the realization that young children are not less intelligent than adults,
though they may view and engage the world in different ways than adults.
Piaget then posited a set of stages that all children progress through.
Much contemporary research (Demetriou et al. 2013; Fischer 2008; Weiten
1992) has revealed that these are not universal across cultures, and that
a child’s development does not always plateau at a specific milestone.
Even so, Piaget’s basic insight is important: adults must be aware that chil-
dren’s minds are not working the same way as their own, and adults must
engage in explicit work to recognize children’s thinking and identify their
learning needs. Technology can facilitate the process of identifying chil-
dren’s developmental progressions in order to provide support that best
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meets children’s needs, based on each child’s developmental stage and
cultural milieu.

Adult support for cognitive development is important. As described
by Vygotsky (1978), adults play a fundamental role in guiding children’s
development and must be sensitive to children’s current state of knowl-
edge and ability in order to help them reach the next level possible within
the scope of their current capacity. This is described as the zone of prox-
imal development—the range between what a child already knows and
what he or she can attain with adult support. Technology can also play
a similar type of supporting role. Most ideally according to this theory,
technology will be able to meet children adaptively based on their prior
knowledge and provide support to allow them to be successful at the next
skill level. Thus, outside support, whether human or technology-based,
must first attend to children’s current thinking before it can help them
move forward. The following describes key aspects of children’s develop-
ment based on maturation.

Much research states that children’s brains continue to develop throughout
childhood and into adolescence, and in some regions even into the third
decade of life (Mungas et al. 2014). Thus, even throughout the primary
school grades, children’s brains are still malleable and changing with age
and inputs from their environment, including neighborhoods and schools
(NRC and Institute of Medicine 2000).

One particular area that continues to develop is the frontal lobe, the
part of the brain located behind the forehead, which has serious implica-
tions for children’s mathematics instruction. The frontal lobe is engaged in
many higher cognitive acts; it is in part responsible for problem-solving,
reasoning, and planning effortful solutions, as well as for inhibiting one’s
impulsive behavior or thoughts (Stuss 2006).

Within the frontal lobe, a constellation of mechanisms work together
to regulate humans’ attention and cognitive processing, known as exec-
utive functions. This is a system that takes a limited set of attention
resources and distributes those resources to a variety of cognitive subpro-
cesses that in turn regulate the dynamics of human cognition (Diamond
2013; Miyake et al. 2000). One very important part of this system is work-
ing memory, which involves the ability to hold information in the mind
and actively use it for problem-solving, reasoning, or other purposes.
For example, in a classroom, if students have been given class instruc-
tions (e.g., “finish this problem and then write your solution on page 7 of
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your packet”) and then a word problem to solve, they must hold the class
instructions as well as the problem numbers and task goal in their mind
while also attempting to perform the relevant calculations. If a student
does not have enough working memory available to remember all of this,
he or she will likely lose parts of the problem and appear to not know how
to solve it, or might not write down the solution where the teacher asked,
when really the issue may have been the student’s ability to simultane-
ously remember all of the details.

The second primary subcomponent of executive functions in children
is inhibitory control, also called cognitive control, in which the reasoner
exerts control over his or her immediate impulses and works to ignore
irrelevant information (Diamond 2013). As an example, if a student is add-
ing two fractions in a classroom, the student’s impulse is to add both the
numerators and then the denominators, since that is the way arithmetic
has always worked with integers. However, the student exerts inhibitory
control to resist this temptation and instead searches his or her mental
space for the correct procedure and executes this.

Reasoning mathematically requires a large amount of both working
memory and inhibitory control, meaning that learning environments that
tax these resources tend to reduce reasoners’ ability to make inferential
leaps, attend to abstract relationships, and broadly perform higher-order
thinking (Tohill and Holyoak 2000; Cho, Holyoak, and Cannon 2007).
Thus, teachers and educational technology must not overload children’s
developing executive function resources so that students do not attend to
irrelevant information and can retain adequate information in their mind to
solve a problem. Also, overloading will mean that students memorize pro-
cedures rather than draw connections and develop necessary conceptual
knowledge.

Overloading working memory and inhibitory control resources can
happen when children have to do lots of calculations in their heads, such
as when teachers give long lists of instructions, or when there are lots of
distractions that they have to work to ignore or not respond to. In tech-
nology platforms, these distractions such as irrelevant pictures, noises,
or game steps that a child needs to either remember or ignore, should
be avoided. Similarly, there can be distractions in an everyday classroom,
such as having to ignore an alluring misconception, remembering prob-
lems without being able to write down or see the steps, or needing to
recall a long list of activity instructions that are external to the mathemat-
ics concepts themselves.

The reason that working memory is important in mathematical
thinking is because it plays an important role in taking mathematical
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information and making sense of it, transforming it (e.g., moving from a
word problem to a symbolic equation), and, generally, allowing children
to think their way through problems. Imagine that a student is listening to
two other students describe different ways they solved a problem. This
can be an extremely beneficial way to help students realize that most
math problems can be solved many different ways, and so they should
therefore try to think through a problem, not just use a method taught
by the teacher. However, to benefit from this kind of mathematical dis-
cussion comparing solutions to problems, each student must create two
mental models of these solutions and then line them up in his or her head
to consider whether both are correct, how similar (or divergent) they
actually are, and whether the student could use these models on another
new problem.

Inhibitory control is integral to suppressing irrelevant yet potentially
salient misconceptions (Cho, Holyoak, and Cannon 2007, Richland,
Morrison, and Holyoak 2006; Begolli et al. 2018). In mathematics, this
could include the misconception that dividing by a fraction should lead to
a smaller number (as it does in integers), or that 6/10 should be more than
3/5 since the numbers are larger. Thus, variations in executive function
cognitive capacity may explain why some students notice and benefit from
mathematical learning opportunities, while others do not unless provided
with more instructional support.

For example, in the problems mentioned earlier, when A = 0, B =
1, C = 2, and so on, solving the equivalence problem F + B = + D
requires that we hold active in working memory each letter (or num-
ber symbol in the case of young children), retrieve its correspondence
to the number symbol (magnitude) from our long-term memory, and
manipulate this information in our working memory to get to the answer.
So, understanding this solution in terms of the magnitudes that F, J, and
D represent, while focusing on the steps necessary to get the correct
answer (D), represents a considerable effort even for adults. Thus it is
unlikely that a child will have adequate additional mental resources to
consider why and how he or she is doing this manipulation and whether
the answer seems correct. However, in LAC, the primary mathematics
teaching method continues to be drill, practice, and memorization of pro-
cedures (Naslund-Hadley, Loera Varela, and Hepworth 2014). Although
some memorization is needed, an almost exclusive focus on procedures
and artifacts leaves the child with fewer resources for critical and cre-
ative thinking.

Educators and technology designers need to be aware that if children’s
executive function resources are overtaxed (including by mathematically
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irrelevant artifacts such as the requirement to remember complicated
instructions or in a game design that requires attending to features that are
not mathematically relevant), children may not have adequate resources to
deploy for problem-solving, mathematical reasoning, checking solutions,
or remembering complex concepts. For example, identifying similarities
and differences between mathematical problems or solutions has been
deemed as useful for building conceptual knowledge of mathematics
(NRC 2001; CCSS Initiative 2010). However, the way that these problems
or solutions are presented can have a large effect on student thinking, with
the largest gains being when students do not have to remember what their
classmates or the teacher said, but rather when they can see these both
on a board, a screen, or on paper (Begolli and Richland 2016; Richland
and McDonough 2010). If a teacher states that a new problem “uses the
same strategy as the last problem,” but the students have to spend men-
tal effort remembering what that last problem strategy was, they will have
less time to think about how that solution can be applied to the new prob-
lem. Educational technology needs to have similar considerations in mind,
for example by visualizing previously referenced examples, to ensure that
children’s resources are not overburdened. Table 1.1 highlights points in
children’s cognitive development that are important to consider when
using technology in the classroom.

A New Definition and Standards for Mathematical Proficiency

The recommendations of research analysis and international reports on
LAC are evident: educational improvements in the region require clear,
high-quality standards for student learning and achievable steps for attain-
ing these aims (ICSU-LAC 2010; Board 2006; Puryear and Goodspeed
2011). Learning standards provide common norms for everyone involved in
the decision-making process of designing and implementing mathematics
educational technology. The standards should involve attainable goals for
student thinking, rather than a list of topics to be covered or general learn-
ing theories that are difficult for teachers to implement (Zimba 2014). LAC
has largely focused on expanding access to education, but few countries
have focused reform efforts on developing national learning standards
(Board 2006). Many of these standards are still developing, but invest-
ments in schools have thus far not resulted in increased learning outcomes
(Puryear and Goodspeed 2011).

As in other higher-achieving countries, educational reforms in the
United States have taken the approach that a necessary first stop to cre-
ating coherent and effective learning experiences for the nation’s youth

LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION



TABLE 1.1

KEY DEVELOPMENTAL POINTS TO CONSIDER WHEN EVALUATING AN

EDUCATIONAL TECHNOLOGY OR CURRICULUM

Cognitive or Curricular
Factor

Primary school children’s
brains are still developing
the capacity to control
their attention, focus

on the relevant parts of
incoming information,
and purposefully not pay
attention to irrelevant
information. This capacity
is referred to as their
executive functions.

Children’s brains are also
developing an ability

to hold several pieces

of information active
simultaneously. This is
called working memory.

Transfer: Children who
learn a concept or
problem-solving strategy
for one problem often do
not notice that they can
use it for other problems
or in new contexts.

Implication for Learning

Instructional designers
may be surprised that
children have trouble
identifying the key
information they are
supposed to be attending
to within a lesson or
informational display, and
are easily distracted. This
distraction can lead to
not paying attention to
crucial lesson content, or
to remembering irrelevant
or sometimes misleading
information.

Holding multiple steps of
problems in their memory,
remembering how one
problem is related to
another problem, thinking
about task instructions
while planning a multistep
solution—all of these are
challenges for primary
school children.

Children’s mathematical
knowledge becomes
inflexible and unlikely
to be used in everyday
contexts, or they do not
make connections from
one concept to another.
This requires relearning
and memorizing many
separate topics rather
than making sense of
mathematics in a more
coherent manner.

What to Look For

Informational displays
should limit irrelevant
information (even if
intended to increase
interest), use movement
sparingly but intentionally,
and at the same time use
cues to draw attention
to key information (e.g.,
brighten information,

or show multiple
representations of the
same concept together).

Activities should not
require remembering lots
of instructions or steps
while planning, thinking
through, or executing
complex problem-
solving. If children are
working to control

their attention (see the
discussion of executive
functions in the top left
panel of this table), they
will have less working
memory available to
simultaneously think
about many steps, pieces
of information, or plans.

Mathematical ideas should
be taught in relation to
other ways that they

can be used. Activities
should be very explicit
about the connections
between mathematical
ideas or concepts, using
comparing or contrasting
language.

Source: Prepared by the authors.
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is to develop high-quality standards for mathematical proficiency. The
U.S. standards stem from a comprehensive research base and are aligned
with educational standards of other higher-achieving countries (Cobb and
Jackson 2011). While the U.S. Common Core curriculum has generated
controversy and is not without fault, it does provide one strong model for
how to use researcher-practitioner partnerships to build a coherent set
of standardized goals for student learning. Importantly, these goals are
not only about curriculum topics. They also include practice standards,
which are goals for student behaviors and approaches to mathematics, as
described in more detail below.

The U.S. Common Core Standards were established with a dual
goal to (1) provide guidance for educators about key topics and prac-
tices to focus on, and (2) allow for common ground so that there could
be district, state, and federal testing to measure and compare stu-
dent progress. The Common Core has been controversial and has been
both praised and criticized in terms of both of these goals. With regard
to the first goal, the standards are under pressure to ensure that key
mathematical content areas are adequately covered and that enough
guidance is provided to teachers to ensure that the aim can be imple-
mented as intended. The second goal has been more controversial, with
concerns arising in part because testing has grown to replace many
instructional days, and in part because these tests are often tied to
funding decisions. Educators argue that there are many reasons why
students might underperform relative to peers that are not tied to edu-
cational quality, such as parent investment or financial security. At the
same time, testing can provide insight into where resources must be
directed to improve student learning, including professional develop-
ment of teachers.

Since the focus here is on the important step of developing standards
for mathematics instruction, the U.S. Common Core Standards are used as
an example that raises some key issues for consideration as Latin American
and Caribbean countries develop their own versions of the standards.

The development of the U.S. Common Core State Standards for Mathe-
matics (CCSS) derived from the collaborative efforts and expertise of
73 specialists involved in educational reform (Zimba 2014). It took into
consideration the learning standards of internationally top-achieving
countries on the standardized Programme for International Student
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Assessment (PISA) and Trends in International Mathematics and Science
Study (TIMSS) assessments (Cobb and Jackson 2011). While many coun-
tries have their own curriculum standards, the CCSS has unique properties
that provide recommendations on how to formulate teaching goals that
draw on theory and aim for deeply thoughtful learners, but are also practi-
cal in a classroom context. The CCSS is not prescriptive in that these goals
may be reached using different instructional techniques. But it does pro-
vide teachers with goals for practices, as well as a structure for deciding
which topics to cover and when. Having teachers all align with these top-
ical sequences helps to ensure vertical integration—coherence between
the curricula taught over multiple years of primary education—such that
teachers know what their students will have learned the year before. The
standards were developed by establishing the following rigorous criteria
(CCSS Initiative 2010):

e Fewer, higher, and clearer standards to best drive effective policy
and practice

e Alignment with college and work expectations so that all students
are prepared for success upon graduating from high school

e Inclusive of rigorous content and applications of knowledge
through higher-order skills so that all students are prepared for the
21st century

e Internationally benchmarked so that all students are prepared for
succeeding in the global economy and society

e Research- and evidence-based.

These criteria resulted in the creation of a model for standards based
on two key components: the development of curriculum content (con-
tent standards); and the instructional practices that lead to mathematical
proficiency (practice standards), as summarized in Table 1.2. Practice
standards describe the particular skills that are expected from students,
while content standards are developed on the basis of these expectations.
The relationship is reciprocal: knowledge and skill expectations drive the
nature of content, and content selection constrains/fosters the expected
knowledge and skills. Educational technology design should be informed
by standards, and content should feed into expectations. The next section
focuses on standards for curriculum content and mathematics practices,
drawing attention to not only content but also to specific goals for stu-
dents’ mathematical thinking. The sections that follow then highlight some
of the core ideas that run throughout the key standards for primary school
mathematics.
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TABLE 1.2
U.S. COMMON CORE STANDARDS

A. Practice Standards B. Content Standards
. Make sense of problems and Elementary
persevere in solving them -« Whole numbers
« Reason abstractly and quantitatively Addition and subtraction

Construct viable arguments and - Multiplication and division
critique the reasoning of others . Fractions and decimals
Model with mathematics
Use appropriate tools strategically High school

Attend to precision Number and quantity

Look for and make use of structure . Algebra

Look for and express regularity in - Functions

repeated reasoning - Modeling
. Geometry

Statistics and probability

Source: Prepared by the authors based on CCSS Initiative (2010).

Practice Standards

Practice standards are designed to describe and codify critical “processes
and proficiencies” needed for students to be qualified users of mathemat-
ics in and outside the classroom. Practice standards refer to how students
engage with mathematical tasks and content, and are distinct and separate
from curriculum topics, which state the mathematical content knowledge
students must master. Internationally, national mathematics standards
typically include curriculum content skills, but they less frequently con-
tain process skills such as those described in panel A of Table 1.2. The
practice standards needed by successful students in the U.S. context were
identified by a highly esteemed, independent organization that has been
involved in school reform and standard development since 1920, the U.S.
National Council of Teachers of Mathematics (NCTM). The NCTM pub-
lishes four research journals in mathematics education, including the most
influential periodical in mathematics education worldwide—the Journal
for Research in Mathematics Education (H Index, 60, 2017). The NCTM’s
synthesis of research resulted in the creation of the “process” strands in
problem-solving, reasoning and proof, communication, representation,
and connections (NCTM 2000).

These strands derive from a definition of mathematical proficiency
developed by the U.S. National Research Council (NRC 2001), which
was charged by the U.S. Department of Education with defining what to
expect of students exiting high school. The council’s landmark 2001 report
integrates a large body of mathematics educational research to define
mathematical proficiency and guidance on how they should be used to
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frame educational goals. The NRC defined mathematical proficiency as a
set of five interwoven strands:

e Conceptual understanding: Comprehension of mathematical con-
cepts, operations, and relations

e Procedural fluency: Skill in carrying out procedures flexibly, accu-
rately, efficiently, and appropriately

e Strategic competence: Ability to formulate, represent, and solve
mathematical problems

e Adaptive reasoning. Capacity for logical thought, reflection, expla-
nation, and justification

e Productive disposition: Habitual inclination to see mathematics as
sensible, useful, and worthwhile, coupled with a belief in diligence
and one’s own efficacy (NRC 2001).

The CCSS practice standards were developed by building on the
NCTM'’s definitions of mathematics proficiencies—"processes and profi-
ciencies.” More detail about each student expectation is as follows:

1.  Make sense of problems and persevere in solving them. Problem-
solving begins with students explaining to themselves the meaning of
the problem and analyzing multiple entry points for solutions. Solu-
tions themselves are checked with different methods to ensure their
validity.

2. Reason abstractly and quantitatively. The student should have the
ability to decontextualize a problem by representing it only through
abstract symbols, such as numbers and/or shapes (e.g., Juan had
some apples. He gave 42 to Maria and is left with 34. x - 42 = 34),
and the ability to pause and contextualize abstract symbols into their
referents. Children should reason about quantity through units and
by understanding the meaning of quantity, not just by following the
computations.

3. Construct viable arguments and critique the reasoning of others. Stu-
dents should communicate by building logical arguments and justify
critiques by breaking down situations into cases. They should reason
inductively about data and evaluate plausibility based on the context of
the data. Mathematically proficient students should be able to evaluate
effectiveness and plausibility to recognize flawed arguments, recognize
domains where correct arguments apply, and ask questions.

4. Model with mathematics. Students should reason about every-
day events and use mathematics to describe these events. They
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should be able to quantify practical situations and connect or rep-
resent them through graphs, tables, diagrams, flowcharts, and for-
mulas while being able to flexibly traverse between the data and
context.

Use appropriate tools strategically. Students should be familiar with
the mathematical tools that are available to them to solve problems,
including pencil and paper, calculator, spreadsheets, compass, ruler,
dynamic geometry software, or a statistical package. Importantly,
students should be able to recognize which tool is appropriate for
each situation or problem.

Attend to precision. Mathematically proficient students should be
able to communicate with precision (both in writing and verbally,
according to context), determine units of measure and labels, under-
stand the symbols they use, and calculate with efficiency.

Look for and make use of structure. Students should be aware of
structural properties of numbers and shapes. They should under-
stand how to make use of the commutative property (A+B =B+ A
and A x B=B x A), the associative property (A+(B+C)=(A+B)+C
and A x (B x C) = (A x B) x C)), and the distributive property (A x (B
+ C) = A x B+ A x C). Mathematically proficient students will notice
patterns and be able to break problems down into parts that make
sense. For example, in the following problem, 5 * (x+3) = 30, stu-
dents should be guided to notice that 5 * “something” = 30, namely
(x + 3) could be thought of as an abstract quantity, and if students
know 5 x 6 = 30, then “something” or x + 3 = 6. Students can simplify
the problem by using their knowledge of its mathematical structure
to solve it on a conceptual level without necessarily following a pro-
cedure. Similarly, by knowing that a box is comprised of six sides,
students should recognize that the area of a cube is equal to the
area of six squares.

Look for and express regularity in repeated reasoning. Mathemati-
cally proficient students should be guided to reason out repetitive
mathematical operations and/or results to derive abstract knowl-
edge—including generalizations, such as mathematical formulas and
shortcuts. For instance, a teacher could ask students to come up
with various ways of representing the number 32 through fractions.
Some students may represent 32 as 64 + 2, 96 + 3, 128 + 4, while
others may represent 32 as 320 + 10, 3,200 + 100, 32,000 + 10,000,
and so on. The teacher can lead them to discover that 32 could be
any number, for instance, “x” and that the general pattern is nx/n =
x for all n>0.
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Content Standards

A second major contribution of the CCSS is to specify big ideas that run
through multiple topic areas but that lend coherence to the curriculum.
Many national standards have been critiqued as being a “mile wide and
an inch deep” (Schmidt, Houang, and Cogan 2002), meaning that they
encourage a curriculum with too many topics, such that teachers cannot
help students attain a deep conceptual understanding of any one
topic.

Instead, the CCSS proposes that curriculum content be focused and
coherent in order to foster students’ attainment of knowledge and skills in
accordance with expectations. The curriculum focus is critical for centering
everyone’sattentionontopicsthatare essentialto mathematical proficiency.
Coherence between topics is key so that content is rendered in a logical
way, aligned with the structure of mathematics as a discipline (Zimba 2014).
The focus and coherence of mathematics content is comparable between
the top-achieving countries in international assessments of mathematics,
and the U.S. Common Core Standards have a striking similarity with those
seen in these countries (Schmidt, Houang, and Cogan 2002; Schmidt
and Houang 2012). The standards seek to harness the foundational
content necessary for students to develop complex mathematical
thinking focused on mastery of procedures, conceptual understanding,
and the application of mathematics

to real-world situations. While the
entire curriculum cannot be covered
here, the core mathematical ideas
for primary school mathematics can
be summarized as (1) number, and
(2) geometry and measurement.
Administrators evaluating educational
software might consider whether
the content being taught aligns
with these foundational knowledge
areas. Table 1.3 provides a list of
content curriculum areas covered by
the content standards for primary
school mathematics.

TABLE 1.3

KEY PRIMARY SCHOOL
MATHEMATICS CONTENT
CURRICULUM AREAS

Counting and cardinality
Operations and algebraic thinking
Number and operations in base 10
Number and operations—fractions
Measurement and data

Geometry

Ratios and proportional relationships
The number system

Expressions and equations
Functions

Statistics and probability

Source: Prepared by the authors based on
CCSS Initiative (2010).

The Development of Mathematical Thinking

This section describesin more detail the two categories of the mathematical
skills presented earlier in Table 1.2: (1) number skills, and (2) geometric/
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measurement/spatial skills. A wide spectrum of early mathematics
software is available for these two skill categories.

At the heart of the mathematics curriculum during the preschool,
elementary school, and middle school years is the concept of numbers
(NRC 2001). Research on numerical development encompasses a wide
gamut of mathematical skills, from rudimentary knowledge emerging
in early infancy to complex mathematics in adulthood, examined from
various developmental perspectives and disciplines, including cultural,
linguistic, cognitive, and neurological ones, to name a few.

While one may be used to thinking about mathematics as a precise
discipline centered on numbers, the example of numbers substituted with
alphabetic symbols above shows that numbers are tools to help us think
about deeper mathematical concepts relating to quantity, shape, and
measurement. Before babies have ways of talking explicitly about numbers
(e.g., with words, “one” “two,” and later with symbols, e.g., “1, 2”), they have
a system in their brains that helps them discriminate coarse magnitudes and
shapes. For example, six-month-olds can distinguish between 2:1ratios (e.g.,
seeing eight ducks versus four ducks), which is supported by neurological
data. Infants do not count, but instead have an approximate representation
that can discriminate eight ducks as more than four ducks. However, children
do not begin to make the connection between the elementary, separate
quantities 1-4 and symbols to describe those set sizes until they are 3 or
4 years of age, or later for children from impoverished backgrounds. This
progression from nonsymbolic (size, quantity, amount) ways of thinking
about numbers to symbolic ways (e.g.,, number words or agreed-upon
conventions for shapes that stand for amounts such as “1” and “2”) happens
at approximately 3 or 4 years of age. As children grow, this correspondence
between symbols and senses of quantity expands to account for a wider
range of whole numbers. This progression is slow and stepwise, starting
with 0-10 when they are around 4 or 5 years old, then 0-100, until they
comprehend 0-1,000 when they are 8 or 9 years old. At the core of the
developmental trajectory underlying numbers lie the mathematical concepts
of ordinality, cardinality, and one-to-one correspondence that present a
particular challenge for children and are described next.

Numbers: Ordinality, Cardinality, and One-to-One Correspondence
It is hard to think of a concept that can match the versatile nature of
numbers. Numbers can be thought of as an infinitely long, ordered list of
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distinct numerals, that is, ordinality (e.g., 1, 2, 3, 4, ..., which we will refer
to as the “number list” for ease of reading) and also as quantifying a set
of things, that is, cardinality (e.g., “I have four apples”). As adults, we may
think of the number list and cardinality as a single system of numbers, but
children still need to make a connection between the two. These concepts
are very familiar to adults, and to remind the reader of how difficult these
connections can be when working with abstract symbols, we refer back
to the example used in the beginning of the chapter (e.g., how many
fingers is “H”?). To use numbers for mathematical thinking, people need
a physical representation either in spoken or written form (NRC 2001).
Number symbols are arbitrary: for example, the quantity of three could be
represented by the symbol 3, but we could have adopted a different symbol
(e.g,, lll, or D, as was the case in the example). The connection between the
number list and cardinality underlies all mathematical thinking.

As children begin to understand the one-to-one correspondence
between certain items and a list of numbers and cardinality (a set of items),
they begin to realize that counting is a form of addition. If a student has
4 apples and the teacher gives him or her 1 more, the student does not
need to count the 4 apples from the beginning to realize he or she has 5
apples, if the student realizes that 5 comes after 4 on the list. Yet, children
who are taught to follow a procedure for addition will often revert back to
counting their set from the beginning (i.e., count the set of 4 apples then
count 1 more apple to make 5 apples) because they have been taught to
follow such procedures for “addition.” Thus, children need to be guided to
observe that counting is a way of adding, whereas subtracting is counting
backwards. Educators need to keep in mind, however, that these concepts
are connected through symbols that children are still mastering (e.g.,
imagine if one had to count onward from “J”). Often children will be able
to “add” by counting, without understanding the increase in magnitude,
just as an adult would try to perform the procedure of counting onward
(i.e, recite the letters) from “J” by knowing that after “J” comes K, L, M and
so on, but may not be able to immediately think of the overall quantitative
increase or the total quantity—denoted by the last symbol of the set. Much
too often, teaching and technology reinforce the recitation of numbers, not
understanding. Instead, symbols need to be accompanied by magnitude
representations, such as number lines that increase/decrease in quantity in
alignment with the list of symbols (Siegler and Ramani 2008). As children
master the one-to-one correspondence, they need to be guided toward
understanding our number system as a base 10 place-value system,
leading them to become fluent in making 1-to-10, 1-to-100, 1-to-1000 etc.
correspondences, since children think of each place value as a single unit.
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Base 10 and Place Value

A key element of gaining number sense in the primary grades is developing
an understanding of the base 10 pattern and place value and using these for
arithmetic calculations of addition, subtraction, multiplication, and division
with increasingly large numbers. Early place-value skills predict arithmetic
skills in middle primary school (Moeller et al. 2011), and experimental data
reveal that high-quality training in base 10 understanding leads to gains
in overall number understanding (Mix et al. 2017). Interestingly, Mix et al.
(2017) found that all students receiving directed instruction about how to
decompose numbers into their base 10 structure using symbols (e.g., 112
=100 + 10 + 1) and those who did so with both symbols and with base 10
blocks improved on number line magnitude skills, which are a key indicator
of number skills. Also interestingly, they found that while all students
gained, the concrete manipulatives worked best for students who started
with lower understanding, while the symbol version was most effective for
students who started with a higher understanding.

In arithmetic, children must first understand the mathematical concepts
underlying their calculations. Understanding can be evidenced by their
ability to group and decompose numbers flexibly (e.g., understanding
easily that 4 + 3 =7, which also equals 2+ 5or 1+ 6 or 6 + 1, or the number
of cookies held by a child with 4 cookies who gains 3 more). By grouping
and regrouping in these ways, children can begin to learn what happens
when the sum reaches above 9, leading to a second 10, which introduces
place value. Regrouping numbers into tens and ones (e.g., 121 = 100 + 20
+ 1), and building on that to add numbers by adding the ones, tens, and
hundreds separately, can be used to gain a strong understanding of the
role of place value.

An important consideration when teaching any mathematical rule or
algorithm is that children seek efficiency. Therefore, if they are taught an
algorithm, such as “carrying” or “borrowing” for multidigit addition or sub-
traction, they will very likely attempt to use that rule regardless of whether
they truly understand it. The main problems stemming from this are that
(1) children make errors in the rule execution, but their lack of understand-
ing means that they do not recognize their answers as implausible; or
(2) they do not understand the limits to applying a rule, leading to over- or
under-application. Importantly, once students start using an algorithm, an
instructor will have to work very hard to motivate them to pay attention
to more conceptual discussions or activities that prove the rule. Thus, it is
essential to ensure that students have a strong base for understanding a
rule, such as “carrying” or “borrowing” for multidigit addition or subtrac-
tion, before it is introduced.

LEARNING MATHEMATICS IN THE 21ST CENTURY: ADDING TECHNOLOGY TO THE EQUATION



Fluency

Once this understanding of place value is strong, and only then, is fluent
memorization of mathematical facts important. Children must become
fluent in these calculations, meaning that they must practice speeded
memorization of routine calculations of addition, subtraction, multiplication,
and division of integers between O and 12. This enables students to free
up conceptual resources for thinking through increasingly more complex
problems. Thus, both conceptual understanding and memorization are
important to developing strong number sense, but memorization that
proceeds without understanding is unlikely to support full mathematical
proficiency. Technology can provide an excellent tool for such memorization
practice, with optimal efficiency produced by creating some spaced time
between each repetition of a number fact to be memorized, but making
shorter intervals between repetitions for items that were answered
incorrectly, and longer intervals for items answered correctly (Kang 2016).

Fractions
Fractions are an additional core curriculum area in primary mathematics.
However, fractions are highly challenging, in part because they involve
a different understanding of numbers than emerges from experience
performing arithmetic calculations with integers. For example, larger
numbers in the denominator of a fraction signify an increasingly small
quantity, which is counterintuitive unless children fully understand the
role of fractions as partial quantities. Children’s understanding of fraction
representations seems to develop around second grade, but some adults
never reach high levels of fraction proficiency (DeWolf et al. 2014).
Foundational knowledge of fractions is thought to be critical for children
to successfully advance to algebra. In fact, the evidence suggests that
fraction knowledge at age 10 predicts algebra knowledge at age 16, after
accounting for other types of mathematical knowledge (e.g., addition,
multiplication), cognitive ability measures, and family income and
education (Siegler et al. 2012).

There are several competing theories for how children advance from
a rudimentary stage of distinguishing magnitudes to proficiency with
fractions. A common thread among these theories suggests that the
development of children’s knowledge of fraction concepts is distinct from
that of whole numbers. Thisimplies that an understanding of whole numbers
interferes with the later learning of fractions (Wynn 2002; Gelman and
Williams 1998; Vosniadou, Vamvakoussi, and Skopeliti 2008; Geary 2007).
These theories have provided fruitful ways for thinking about how children
learn whole numbers, but have generally provided incomplete accounts
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of children’s developing thinking, suggesting that there are indeed strong
relationships between whole number and fraction understanding.

More recent studies indicate that children who can more accurately put
a number on a number line and more fully understand base 10 structure
and number decomposition can more quickly build fraction understanding
(Ischebeck, Schocke, and Delazer 2009; Bailey, Siegler, and Geary 2014;
Meert, Grégoire, and Noél 2009; Siegler and Lortie-Forges 2014). This has
important implications for educators and technology designers because it
suggests that children should be taught to integrate their knowledge about
whole number magnitudes with their understanding of fraction magnitudes.
Similar to issues of one-to-one correspondence with whole numbers, children
need to understand the correspondence regarding the relationship between
two numbers in a fraction and the magnitude they represent. A successful
intervention that could translate to educational technology is to teach children
to represent fractions on a number line in order for them to understand the
magnitude related to the fraction and connect that with their whole number
knowledge (Fuchs et al. 2013, 2014). This is also supported by a recent theory of
number development from Siegler and colleagues, known as the integrative
theory of numerical development, which suggests that children’s conceptual
development of fraction knowledge lies on a continuous progression with
their conceptual development of whole numbers (Siegler, Thompson, and
Schneider 2011; Siegler and Lortie-Forges 2014). Based on this theory,
children’s number development is comprised of four developmental steps
that build on each other:

1. Nonsymbolic representations of quantity

2. Moving from nonsymbolic to symbolic representations of quantity

3. Extending symbolic representations to larger quantities

4. Extending knowledge of whole numbers to rational numbers (fractions).

These stages are useful for discussing numerical development
through primary school. There is research support for the idea that
improving knowledge of whole numbers extends to fractions and,
subsequently, fraction arithmetic (Fuchs et al. 2013, 2014). Thus, moving
from nonsymbolic to symbolic representations between magnitudes and
number symbols of increasingly large or fractional numbers is not a rote
memorization process. Rather, it is the key developmental progression
in children’s understanding of numbers and should be considered in the
design of primary school curricula. Also crucial is that at each stage the
teacher guides students to recognize the relationships between each of
these four steps, for example showing nonsymbolic quantities next to
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symbolic representations. While this is more commonly enacted for small
numbers in the early grades, it is also important for larger numbers and
fractions. This could be accomplished with manipulatives, an abacus, or
even by drawing and counting marks such as tallies.

Geometry, Measurement, and Spatial Thinking

Beyond numbers, primary school mathematics builds on children’s
fundamental spatial and geometric skills. From complex natural structures
of flower petals to the intricate architecture of skyscrapers built to resist
earthquakes, humans perceive objects in the world as shapes of various
measurements existing in space. Geometry may be defined as the study
of shapes and space, and measurement as a manner of specifying the
size of objects. Together, these play a vital role in children’s development
of sophisticated skills needed in many modern undertakings, including
science, engineering, architecture, and art. The purpose of geometric
shapes (triangles, circles, cylinders, etc.) is analogous to the purpose of
numbers. They are abstract objects that approximate objects in the real
world and serve as thinking tools that help us represent, measure, and
manipulate objects around us.

Abstract objects, such as the cube, provide us the freedom to focus
on their varying attributes of two-dimensional (2-D) and three-dimensional
(3-D) space. For example, children can attend to length and area in 2-D and
volume in 3-D. Working with these attributes necessitates an understanding
that various units can be used to measure a cube. One could use a one-meter
stick to measure the length of the sides, one-meter-squared tiles to measure
the area, or one-meter-cubed blocks to measure the volume. These measure-
ments are extensions of a way to understand that the size of each unit always
adds up such that the final number means the total number of units (e.g., 3
meters long, 3 square meters, or 3 cubed meters). This is the same notion
of cardinality described earlier, where children must first understand, when
counting, that the final in a count list of objects refers to the entirety of the
set. Thus, measurement and geometry can provide a supporting context for
learning cardinality, a key mathematical concept, as well as for understand-
ing how to use cardinality to understand measurement.!

There are object properties that can be observed/discovered by
composing/decomposing shapes and/or moving them through space.
Analogous with the conceptual benefits of decomposing and combining

' Forafuller theory of children’s learning trajectory for measurement skill, see Szildgyi,

Clements, and Sarama (2013).
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numbers into sets, smaller shapes can be combined to form one large
shape, or a single large shape can be decomposed to form smaller shapes.
Composing and decomposing are important geometric manipulations that
will help children understand concepts of area in 2-D space and volume in
3-D space. Reasoning about mathematics in the number domain and in
the geometry and measurement domain is deeply intertwined, such that
understanding in one domain can be used to facilitate understanding in
the other.

Spatial thinking skills include how an object is positioned in space,
alignments between objects and the relationships among them (above,
below, half, etc.), ways of representing ideas in relation to one another (e.g.,
1/2 or 1:2), and the vocabulary itself used to describe spatial relationships
(“above,” “under,” “behind;” see NRC 2006). Humans and animals use
spatial thinking to navigate their environment—this is how we find our way
home after a long walk. While navigation has important implications for
finding our way through space, other aspects of spatial thinking are also
theorized to be fundamental to mathematics education.

Spatial thinking skills afford the learner a way to conceptualize prob-
lems before solving them (Clements and Sarama 2007) and to categorize
and represent shapes and objects and manipulate them through transfor-
mations (e.g., rotating objects, translating or moving objects, zooming in
or out of objects, and folding; see NRC 2009). All species of animals that
move through space use some form of spatial thinking, but only humans
can extend their spatial knowledge through symbolic representational sys-
tems and figures such as numeric and geometric symbols, language, units
of measurement, maps, diagrams, and graphs (NRC 2009). Thus, humans
have the advantage to be able to learn and build on representations by rea-
soning. The sophistication of spatial thinking skills requires humans to use all
three aspects of spatial thinking—space, representation, and spatial reason-
ing—in concert. While children have rudimentary spatial thinking skills from
early infancy, their development of sophisticated spatial thinking seems to
largely depend on their experiences with symbolic representations and fig-
ures, including puzzles, blocks, and digital environments. This suggests that
spatial thinking abilities can and should be formally taught in schools with
the use of strategically designed curricula and technology (NRC 2006).

The research evidence on spatial thinking suggests that infants can
recognize and categorize shapes, objects, and distances on a coarse level
before they can talk (NRC 2009). It is not until the second year of life that
infants begin to make connections between their spatial abilities and use
of spatial language. For example, 3-month-olds can differentiate spatial
categories such as up versus down and left versus right (Quinn 2004). By
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five months, infants can use geometric cues to learn the spatial location
of objects (Newcombe, Huttenlocher, and Learmonth 1999). These abilities
progress by 12-16 months to help them search for hidden objects (Hermer
and Spelke 1994). By 4-5 years, children start showing abilities to perform
transformations—moving objects in space and mental rotation (that is,
turning an object on a vertical or horizontal axis by visualizing it in space).
At this stage, children’s skills are not always reliable, but the spatial thinking
skills needed to transform objects in one’s mind (e.g., imagining how a
paper might look if it was folded), mental rotation, and visualizing objects
from different perspectives continue to increase over time. Importantly, the
development of spatial thinking depends on experiential skills.

Gender differences have played an important part of the literature on
spatial skills and related mathematics. In the United States, clear gender
differences emerge by 4% years old, and differences based on parents’
income and educationemerge by the second grade (Levine etal.2005). While
some have raised the possibility that these differences are genetic, much
work suggests that socialization of gender differences in key mathematical
and spatial skills begins early (Levine et al. 2016). A longitudinal study
examining how U.S. parents play with their children suggests that parents
used more spatial words and games when playing with their boys than with
their girls (Levine et al. 2012). The amount of parent use of spatial terms
predicts children‘s own spatial language use (Pruden and Levine 2017), and
parents’ spatial talk predicts children’s later spatial skills (Levine et al. 2012).
Parents’ use of spatial language and children’s play experiences (e.g., playing
with blocks and puzzles) also vary across different levels of socioeconomic
status, which may lead to spatial thinking differences between high and low
socioeconomic status children upon school entry, which in turn can lead to
differencesinschool mathematics skills such as geometric thinking (Lourenco
et al. 2011). This malleability is an opportunity to enhance the skills that
underpin one aspect of primary school mathematics. Also important with
regard to gender differences, it may be that identified gender differences
across spatial and/or mathematical skill domains are driven by adult
socialization, rather than any genetic or sex differences (Levine et al. 2016).
While there are no comparable studies conducted in LAC, awareness of the
potential for gender differences in educational experiences is important and
could help to mitigate any tendencies to differentiate by sex.

Mental rotation and transformations represent the foundation for
developing more sophisticated spatial thinking skills. These are simple
skills that are highly correlated with broader mathematical achievement
(Mix et al. 2016). Additionally, symbolic representations of space, such as
spatial language, seem to play a key role in shaping children’s geometry
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development in later years. Language helps children retain spatial concepts
(Gentner 2003). Teachers and educators can use more spatial language and
measurement terms (units, cardinality statements) to increase children’s
knowledge and use. Children’s understanding greatly depends on their
experiences.

Early spatial skills together with environmental factors represent
foundational knowledge for the later development of geometry and measure-
ment. Measurement is important because it represents the intersection
between geometry and numbers: that is, measurement can attach a “number
to spatial dimensions” (NRC 2009). Children’s ability to measure seems
to arise from their ability to compare lengths of objects, which begins
around 4-6 months old (Baillargeon and DeVos 1991). Though these length
discriminations are coarse, they become more precise between 2 and 4 years
old. Units, meanwhile, pose a challenge that children do not overcome without
explicit instruction. This is particularly true for transformations between units
(e.g., 1 meter = 1,000 millimeters). Despite the important role that spatial
thinking plays in the development of measurement and geometry, spatial
thinking has not been successfully integrated into educational curricula.
Nevertheless, the research base supporting spatial thinking has drawn interest
in educational communities because it is trainable and has been linked
to achievements in science and engineering careers. In LAC, the teaching
of spatial reasoning has already been piloted and found to increase early
mathematics learning (Naslund-Hadley, Loera Varela, and Hepworth 2014).

In the last two decades, scientists have discovered promising
interventions that could close the gap between students with high and
low spatial thinking skills. A meta-analysis of over 200 studies revealed
significant gains after explicit training (Uttal et al. 2013b), suggesting
this is an important area of focus in primary school mathematics. This
meta-analysis suggests that training works for both males and females
equally and lower performers gain more spatial skills than do higher
performers. Spatial thinking interventions were categorized into three
categories: course training (e.g., engineering courses), video games, and
spatial tasks. There were no significant differences in the results observed
across these three methods—all led to improvements (Uttal et al. 2013b).
There are two reasons why spatial training might be effective. First,
interacting with spatial tasks makes people more comfortable attempting
them in social situations, reducing performance anxiety and fear of gender
stereotypes, and thus boosting confidence (Ramirez et al. 2012; Estes and
Felker 2011; Campbell and Collaer 2009). Second, these tasks may improve
the cognitive skills necessary for spatial thinking—for example, the working
memory needed to master a video game might lead to improvements in
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spatial thinking (Dye, Green, and Bavelier 2009). Spatial thinking is effective
probably because of both cognitive skills and social factors. Teachers and
educational technology have an important role in bridging these more
intuitive, rudimentary skills with mathematical concepts through spatial
representations, such as number lines, measurements, blocks, etc.

Spatial Thinking in Education and Careers

A series of studies provide evidence that not only might these early spa-
tial skills impact mathematics learning in a short-term way, they may also
have long-term effects on students’ persistence in school and careers that
are related to science and mathematics. Super and Bachrach (1957) exam-
ined the personal characteristics of scientists and engineers and found a
strong relationship between people’s spatial ability and their potential to
move into careers in science, technology, engineering, and mathematics
(STEM). In the decades since, many other studies have examined whether
spatial abilities could predict future careers (Benbow and Stanley 1982;
Shea, Lubinski, and Benbow 2001). The findings from a congregate of
50 years of research on data from more than 400,000 participants con-
sistently show that spatial ability around middle- or high-school levels
predicted career placement in STEM fields (Wai, Lubinski, and Benbow
2009). Importantly, spatial ability is predictive beyond students’ general
mathematics and verbal abilities.

Spatial skills may matter most when students are at a point of entry
in STEM disciplines and are grappling with elementary content (Uttal and
Cohen 2012). Spatial skills are necessary for rotating molecular structures
and for understanding maps and graphs (Hegarty 2010), and those who
feel uncomfortable with these initial practices may not persist in STEM
career trajectories. Thus, from an early stage, students with weaker spa-
tial skills may be deterred from STEM topics (Wai, Lubinski, and Benbow
2009; Uttal et al. 2013b).

Overall, children’s development of mathematics through primary school
requires them to apply specific mathematical reasoning skills that revolve
around understanding units, composing/decomposing quantities and
shapes, relationships and order, looking for patterns and structures, and
organizing information throughout multiple domains and at every grade
level. The content of mathematics learning standards should change appro-
priately with each grade level based on what children are able to learn at
each respective age.?2 At each grade level and with all content, children

2 See, for example, the CCSS public website at http://www.corestandards.org/Math/.
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TABLE 1.4

POINTS TO CONSIDER WHEN EVALUATING EDUCATIONAL TECHNOLOGY
OR INSTRUCTION RELATED TO MATHEMATICAL LEARNING

Curricular Factor

Instruction should be
clearly related to a goal
for broad mathematics
proficiency, rather
than to adequate
performance on
individual practices or
content areas.

Children are born with
interest in quantity and
small numbers.

Children must
understand the base 10
structure of numbers to
fully comprehend place
value.

Spatial skills are
trainable and are
foundational to
measurement,
geometry, and many
future careers that
build on math or
science.

Implication for Learning

Instruction will be more
effective in creating proficient
learners if instructors have a
set of standards that they can
aim toward, and particularly if
these standards address both
curriculum goals and goals
for mathematical practice.

Teaching number symbols
and calculations should build
on these skills and interests.

Many primary school
students learn rules for
multidigit arithmetic without
understanding place value.

Giving students experience
in building spatial skills

while learning curriculum
content related to numbers,
measurement, or geometry,
can build understanding of
those topics as well as spatial
skills themselves.

What to Look For

Materials that outline
goals for curriculum
attainment and student
thinking, and evidence
of these goals in the
instruction.

Activities that move
back and forth between
interacting with real
guantities and symbols
that represent them.

Number pattern activities,
i.e., counting by 2s,

3s, 4s, etc.; breaking
numbers down into their
ones, tens, hundreds;
using manipulatives or
technology to handle
ones, tens, hundreds, etc.

Experience using maps,
mentally rotating objects,
solving puzzles, or using
spatial words to describe
information.

Source: Prepared by the authors.

need to display mathematical reasoning skills outlined as mathematical
proficiency in the practice standards. Table 1.4 describes the learning and
classroom implications of different mathematical curriculum goals.

1.5 Challenges to the Learning Process

While instructional designers benefit from clear standards and aims, they
also benefit from awareness of key challenges that their students will face
when acquiring primary school mathematics proficiency. While a catalogue
of all the challenges is beyond the scope of this chapter, it is important to
note first that efforts to improve educational outcomes will be streamlined
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by attention to, and awareness of, students’ common misconceptions and
areas of potential difficulty. This section first highlights some of the key
misconceptions students develop during the primary school period and
encourages educators to take explicit care that their students avoid or
correct these misconceptions. It is a common belief that students who are
not allowed to make errors will be more successful in the long term, though
errors can actually enhance future learning through increased motivation
and curiosity, as well as enhanced memory (Richland, Kornell, and Kao
2009; Butterfield and Metcalfe 2006). The section then highlights factors
that exacerbate achievement gaps within regions: feelings of pressure and
stereotypes that may affect girls and minorities in particular, and which
systematically lower math performance and the willingness to continue
working in this content area.

Asacomplementtodetermining optimal curriculumand practice standards,
research has also demonstrated the utility of identifying common areas
where children are likely to have difficulties and develop persistent
misconceptions. Educators who are aware of potential misconceptions in
a given content area can assess their students to determine whether they
exhibit the misconception, and can then guide them towards correcting it.
This is a more effective strategy than teaching the correct information and
not engaging with the misconception. In that case, the learner will often
exhibit the correct procedures, but after a delay, or faced with a similar but
distinct type of problem, the misconception will resurface. If it was never
addressed in the first place, the students’ mental representations will not
have changed. While this chapter cannot cover all areas of misconception
in primary school mathematics, it highlights two areas—fractions and
fraction arithmetic, and equivalence and equations—to demonstrate the
importance of documenting and reorienting misconceptions in support of
student learning. It is important to be vigilant in identifying instruction
(or educational technology) that creates or reinforces misconceptions
versus instructional conditions that support students in refining their
understanding to be more accurate.

Fractions and Fraction Arithmetic

Asnoted above, children often develop misconceptions about fractions and
fraction arithmetic, failing to understand how quantity concepts of whole
numbers cannot directly translate to quantity in fractions. For example,
children will often add two fractions by adding both the numerator and

THE DEVELOPMENT OF MATHEMATICAL THINKING IN CHILDREN

43



44

the denominator (e.g., 2/7 + 3/4 = 5/11) and/or believe that multiplying two
fractions leads to a larger quantity and dividing leads to a smaller quantity.
These misconceptions may stem from misunderstanding the operations of
multiplication and division.

Division is largely taught as dividing a quantity, or sharing, and it
is difficult to conceptualize that one can divide or share a quantity and
the outcome will be a larger number (e.g., 2 + 1 - 8). In these cases, it
may be more useful to conceptualize division as a measurement or as an
investigation of how many x’s fit into a y—namely, how many times a divisor
(e, 1 ) goes into the dividend (e.g., 2), where the result is a quotient (e.g.,
8), from the Latin word quot which refers to “how many.”

Similarly, multiplication is thought of as repeated addition, but this
becomes difficult to mentally simulate, even for adults, when involving
fractions (e.g., 2 x L. 1. On the other hand, misconceptions about
fractions may also stem from a lack of understanding about the
magnitude represented by symbols used to represent fractions, which is
apparent when children are asked to compare fractions (and decimals),
and think the larger number also represents the larger quantity (e.g., 1/12
is larger than 1/2 or 0.452 is larger than 0.51). These errors are a clear
indicator that children think about mathematics as following procedures
without understanding the meaning behind the symbols or operations.
It is important to note that these errors are also common in students
attending two-year colleges. Successful interventions have revolved
around teaching students to draw relationships between fractions and
broad differences in percentages (e.g., 50 percent is “half,” 100 percent
is “everything,” 99 percent is “almost everything,” 1 percent is “almost
nothing;” see Moss and Case 1999) and emphasizing fraction magnitudes
(Fuchs et al. 2013, 2014).

Equivalence and Equations

A second area where children in primary school regularly develop
misconceptions pertains to understanding equivalence and equations.
Children are regularly shown only equations with the calculations on the
left of the equal sign, and a blank on the right in which the answer to
the left calculation should be entered. This also coincides with everyday
nonmathematical notions of the equal sign as an intermediary between
cause and effect, or operation and result, which are not in fact equivalence
relationships (e.g., “buy one = get one free,” but not “get one free = buy
one;” see Hofstadter and Sander 2013), which differs from equivalence.
This leads to the belief that an equal sign means “put the answer here to
the right” (e.g., for problem 2 + 5 = __ ). While this often leads students
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to solve a problem correctly, if it is in the standard format, these children
do not develop a more full and flexible understanding of equivalence. For
example, they may enter a “7” for the blank in the following equation:
2+5=__ + 3, not knowing what to do about the extra 3 in place. Also,
they may have trouble with the same problem rewrittenas ___ =2 +5. This
misconception contributes to learners’ particular challenges when doing
algebra, where they must take the equivalence relationship as a starting
point for many calculations. This challenge may be mitigated by providing
students with experience solving equations in nonstandard forms.

Another significant challenge for certain children is their fear and anxiety
about math and their feelings of performance pressure. Anxiety about
mathematics can be culturally based and has been found to be more
common among women than men (Hembree 1990). Mathematics anxiety
leads learners to perform below their actual math abilities. For example,
children may be anxious when they perform math at a chalkboard and the
rest of the class is watching, during a math exam, or even when figuring
out whether they have enough money to buy a candy bar (Ashcraft and
Kirk 2001). Teachers who themselves suffer from mathematics anxiety
might pass it on to their students, particularly the girls in their classrooms
(Beilock et al. 2010).

The fear that one will confirm others’ stereotypes can also cause peo-
ple to overload their working memory system with worried thoughts. For
example, a female student might experience an inner discourse that goes
something like: “Everyone will expect me to do poorly on this test since I'm
a girl, but | really don’t want to do poorly, | have to do well, oh no, | think
I’'m getting this question wrong and that’s going to confirm their stereo-
types...” (Steele and Aronson 1995). Engaging in this type of worry takes
cognitive resources away from the actual mathematics problem, mean-
ing that students are likely to impair their performance despite the goal
of performing well. A body of literature has shown that simply reminding
individuals about their family income, race, gender, or other stereotyped
categorizations before a test can lead to differential performance based
on whether their group is stereotyped as low-performing. Interestingly
these effects can shift, such that Asian-American girls in the United States
at an elite college (where the stereotype is that Asian-Americans are good
in math) did better than their average when reminded of their race, but
lower than their average when reminded of their gender (Shih, Pittinsky,
and Ambady 1999). Together with gender differences in socialization of
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spatial skills, gender differences in mathematics at the university level may
begin to be understood as having multiple sources.

Educators and technology designers thus need to be mindful to use
gender-sensitive material that excludes biases and engages both genders
and all races equally. Similarly, in the design of both paper-based and online
assessments, it is important to include any questions about students’
personal characteristics at the end of the test, rather than the beginning, to
ensure that students will not score differentially based on beliefs related to
their personal identity. Unfortunately, when students begin to feel anxious
or threatened because of their personal characteristics, they perform worse
and this perpetuates stereotype-based beliefs. It is important to disrupt
this insidious cycle. Table 1.5 outlines common challenges in mathematics
instruction that need to be addressed to ensure effective use of education
technologies for all students.

Tools for Supporting Students’ Mathematical Development

Many mathematics interventions have successfully used tools such as
manipulatives or visual representations to help with children’s acquisition
of mathematical concepts, often lowering students’ anxiety by moving
away from pure symbol manipulation and making classroom instruction
more approachable to all.

Manipulatives are typically concrete objects (such as blocks), but they can
take any shape or form (such as interactive technology), with the intention
of providing children a tactile quantitative experience to help them learn
abstract symbolic ideas. The abacus is one example of a concrete, tactile
manipulative that has recently received much attention (Figure 1.1), but one
could even include educational technology in this category as providing
virtual manipulatives.

Manipulatives provide a way for children to go beyond the abstract
thinking about mathematics described in the introductory example. A
recent meta-analysis examined the effects of providing manipulatives for
learning across 55 studies and found evidence of its benefits (Carbonneau,
Marley, and Selig 2013). However, details about how the manipulatives are
used in the instructional context are essential. If manipulatives are used
without strong instruction or clear tasks, children may be engaged during
activities with manipulatives but may not connect this learning to their
mathematical understanding.
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TABLE 1.5

POTENTIAL CHALLENGES TO CONSIDER WHEN EVALUATING
EDUCATIONAL TECHNOLOGY OR INSTRUCTION

Cognitive or
Curricular Factor

Children’s
misconceptions
should be clarified
and addressed
directly, rather than
ignored, and a new
strategy should be
employed. At the
same time, focusing
on a misconception
can lead to some
students reinforcing
that misconception.

Students and teachers
may feel anxiety about
math performance,
either because doing
math makes them
anxious or because
they are worried that
others see them as
poor in math.

Implication for
Learning

Misconceptions

will resurface if not
addressed directly.
But discussing
them also runs the
risk of directing

the attention of
children with low
ability back to these
misconceptions.

Instructors must
be vigilant not to
activate feelings
of anxiety or
stereotype-based
beliefs in their
students.

What to Look For

Undertake activities that elicit
misconceptions by having children
draw out their thought processes
or express them in another
nonstandard way, compare a
misconception to a correct solution,
or set up children to make errors

so that they can be corrected and
discussed. Using counterexamples
to show why a misconception

that does not always work can be
helpful, and explicit demonstrations
of why and how something is a
misconception is essential.

Make sure instruction does not
begin with reminders of children’s
race/ethnicity/cultural or language
background, socioeconomic status,
or gender. Materials should not
contain clear biases toward one of
these categories or against others.
Instead, make sure to transmit a
message that effort, rather than
ability, is responsible for success

in mathematics. Children suffering
anxiety use executive function and
working memory resources toward
that end, so they are especially
susceptible to the problems
described above when these brain
resources are overwhelmed.

Source: Prepared by the authors.

FIGURE 1.1

EXAMPLES OF ABSTRACT (LEFT) AND PERCEPTUALLY RICH (RIGHT)

MANIPULATIVES
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Several elements of the instruction turn out to be important. First, for
manipulatives to be effective, they must be well understood by children
(who sometimes need training in this). Teachers must highlight the key
relationships being taught. The perceptual richness of manipulatives and
adequate instructional time are also important to ensure their usefulness
(Carbonneau, Marley, and Selig 2013).

In terms of development, younger children may encounter two hur-
dles to successfully working with manipulatives. First, they may think of
a block as simply a toy, not a representation of a mathematics concept
of quantity. Considering manipulatives as mathematical symbols may be
conceptually challenging. This does not detract from their educational
value, but teachers must be aware of the students’ learning process and
explicitly support them in learning how to use manipulatives to conceptu-
alize mathematics.

Second, children may follow or be able to repeat demonstrated math-
ematical procedures with blocks but struggle to see the relationship
between blocks and written numbers. Thus, young children may learn
to correspond between quantity and manipulatives, or may provide the
correct answer to a problem they have been shown how to solve with
manipulatives. But they may not use what they have learned when solving
calculation problems later—in other words, the manipulative activity was
an interesting diversion for them, but not central to their conceptualization
of mathematics.

The success of making the shift from concrete to abstract represen-
tations, at any age level, depends on the amount of teacher support.
Teachers must be explicit and remind students to think about the manip-
ulatives even when solving problems without them. Manipulatives
represent an additional system of symbols, but in physical form, and it
takes additional mental resources to process and determine their utility
(Uttal et al. 2013a). Some research evidence suggests that higher levels of
instructional guidance promote increased retention and problem-solving.
On the other hand, strategically presenting manipulatives in a way that
complements instruction over longer time periods seems to help stu-
dents gain a deeper conceptual understanding when they are left to their
own devices or with little instructional guidance (Carbonneau, Marley,
and Selig 2013). This does not imply that providing manipulatives to chil-
dren will, on its own, lead to better learning. On the contrary, even when
students are meant to discover how to use manipulatives with limited or
no guidance from teachers, it is imperative for educators to be thought-
ful and to strategically choose when and how to integrate manipulatives
into everyday instruction (Ball 1992). Manipulatives can take many shapes
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or forms, and common intuition may favor manipulatives with the rich
perceptual features of everyday objects (e.g., a pizza instead of a round
one-color object, or money instead of blocks) as being more beneficial for
children.

The research evidence suggests there are trade-offs. When manip-
ulatives appear similar to the phenomenon that they are supposed to
represent, they are easier for students to use successfully right away. If
they are too abstract, manipulatives may require additional time for stu-
dents to learn how to use them, though, in fact, abstract stimuli can be
most helpful in the long run. Features that are unrelated to mathematical
concepts can distract students from the main learning, whereas simple
objects help children focus on the mathematical structure (Carbonneau,
Marley, and Selig 2013). This suggests that abstract shapes such as plain
squares, circles, and lines are more efficient than using toy animals, flow-
ers, or food as manipulatives. Abstract shapes can help children generalize
mathematical concepts to multiple contexts, whereas with toys, children
seem to restrict their learning to the context of playing with the toy.

Many in the field of developmental psychology or education will con-
sider research by Piaget (1977) when making decisions about the use of
manipulatives. Piaget argued that there is a developmental trajectory such
that younger children would benefit from early use of concrete tools for
thinking about mathematics, moving to abstractions only once they have
reached adolescence. In contrast, more recent research shows that all
children can benefit from manipulatives, but that manipulatives are not
helpful simply because they are concrete objects children can handle.
Rather, the key to making physical manipulatives (or those in a technology
resource) useful is to be sure that children can handle them appropriately
and understand how they are related to the mathematical understand-
ing they are supposed to support. Then they can transition back to using
symbolic representations. If students enjoy and engage in a mathematical
topic with a manipulative, but then do not recognize how to solve a math-
ematics problem on another day without the manipulative, this suggests
the learning was not generalized.

One model for using manipulatives and slowly moving back to sym-
bolic representations has been called “concreteness fading” (Bruner 1964;
Goldstone and Son 2005). The idea is that students first use physical manip-
ulatives—for example, small pebbles to count the number of cookies in a
division problem such as the following: If a boy has 12 cookies and shares
them fairly with his best friend, how many cookies would his friend get?
Now what about sharing them between three friends? The teacher could
first have students use pebbles to solve problems like this, dividing them
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into piles on a piece of paper. Then, they could write the mathematical
symbols on that paper, in order to show the same process but in a sym-
bolic format, mirroring the half relationship of 1 whole (all 12 cookies) split
into two equal groups, recording that this is the total group of cookies
(1) divided into two parts (/2), so each pile gets the label 1/2. The same
can be done with 1/3. Eventually, the teacher could ask students to solve
problems like these using only the symbols, but, at the same time, could
reference the pebbles to help the students connect their now-abstract
learning to the manipulatives: “Remember how you can always just imag-
ine pebbles to help you think about these problems.” Thus, the teacher is
moving from the more concrete use of a manipulative to a more abstract,
symbolic form.3

Beyond the use of concrete manipulatives, incorporating visual images and
written versions of mathematics offers a powerful way to help students
draw connections and reason mathematically (Begolli and Richland 2016).
One way that visual depictions, or representations, of mathematics can
be useful is to show one concept in multiple ways. For example, a teacher
might demonstrate the concept of powers by first showing powers of
two as a set of manipulatives, showing the size of two blocks, then four,
then eight, and so on. Next the teacher could show powers of two as a
two-dimensional graph, which often provides the same information but
in a way that highlights different aspects of the concept—perhaps using
concreteness fading as well. Showing these multiple representations
of the same ideas is known to build broader and more generalizable
understanding (Ainsworth 1999).

At the same time, a key to successfully using multiple representations is
that instructional designers or teachers cannot simply provide the multiple
representations, but must make the connections between them clear and
evident to all students (Ainsworth 1999). There are many pedagogical
decisions that teachers make about using multiple representations. One
could present the manipulatives for powers during one class period,
and, in another period, show the same patterns but using graphs. Or, a
teacher could show the two ways of explaining powers one at a time, and
then move to the formulas. The teacher will understand that these are all
showing the same information, and some students may too. Many other

> Fora fuller review and discussion of how concreteness fading could be accomplished

using technology, see Fyfe et al. (2014).
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students, however, will need the teacher to be very explicit about how
these representations are showing the same information. Teachers can use
strategies such as showing the representations together on the board or in
front of the whole class, or having students see or use them both together
in a technology platform. Also, teachers can use hand gestures and explicit
statements that show how these representations are similar and related
(Alibali et al. 2014). The key is to ensure that students notice similarities
or differences between these representations, and make use of those
comparisons to build broader understanding (Gentner 2010; Richland and
Simms 2015).

Another role for visual representations is to provide a visible record
of the instruction that students have just accomplished, whether it be in
a classroom or in a technology-enhanced setting. Mathematics teachers
around the world often lead their students through a series of problems that
build in a certain way, perhaps demonstrating that a common procedure
can be used for multiple problems, or that certain problems may appear
similar but are in fact different (Hiebert et al. 2003). These sequences are
meaningful and important, but students often do not notice the progres-
sion if teachers do not make it explicit (Gick and Holyoak 1980, 1983).

A technique used in high-achieving Asian countries is to leave prob-
lems or key solution strategies on the board in order to create a visual
record of the lesson (Hiebert et al. 2003). That way, if students miss a
step or need support for their executive function processes in recognizing
the key elements of a lesson, they can look back at the visual information
provided on the board. At the same time, the visual record of key math-
ematical information should not be overwhelmingly distracting or difficult
to parse, or it will have the potential to overload students’ inhibitory con-
trol resources (Fisher, Godwin, and Seltman 2014). Table 1.6 highlights tools
that have been found to be particularly effective for learning mathematics.

Conclusion

This chapter has aimed to provide educators and administrators in Latin
America and the Caribbean with an overview of key aspects of children’s
mathematical development that will be useful for improving educational
outcomes. The hope is that readers have gained an appreciation for the
importance of attending to student thinking in planning instructional
experiences, including developmental lines in maturation and mathe-
matical skills, and avoiding misconceptions and overloading cognitive
processing skills. Further, the aim has been to convey the power of using a
strong standards-based curriculum that can be generalized across student
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TABLE 1.6

TOOLS FOR SUPPORTING THE LEARNING OF MATHEMATICS

Cognitive or
Curricular Factor

Manipulatives can
be highly effective.

Children learn
from visual
representations,
interacting

with multiple
representations
of the same
information.

Compare and
contrast.

Implication for
Learning

Allowing children to
handle manipulatives or
technology that show
concepts in different
ways builds more
flexible, generalizable
understanding.

Provides a broader
understanding of

the concepts, and
more avenues for
remembering the
content. However, it
can overload children’s
attention, so care must
be taken to organize
representations so that
students know what they
are looking at.

Learners understand the
underlying mathematical
concepts, developing a
deeper understanding
that can be generalized
across types of
problems.

What to Look For

Introduce concepts in concrete
ways, and gradually fade to
more symbolic ways of showing
the ideas (like an equation).
Children must fully understand
the manipulatives involved and
have enough instructional time
to learn about them before using
them to learn math ideas.

Undertake activities that enable
children to grapple with the same
ideas in different representations
(e.g., in a story and an equation,
in a physical set of blocks or

a quantity of dried beans to
connect to an equation, orin a
game and symbolic notation) or
different versions of concepts
(e.g., multiple polygons of
unusual configurations to teach
about angles, sides, and area).
Care must be taken to ensure
that children see the relationship
between the more and less
concrete representations.

Employ question-and-answer
activities in which instructors
have a clear goal for comparing
problems, solution strategies,
representations, or mathematical
objects to real-world
phenomena.

Source: Prepared by the authors.

populations within a country, and using a refined definition of mathemati-

cal proficiency.

This theoretical overview has been provided to drive home a central
point. Educators and administrators involved in improving educational
outcomes need to understand how children think, what they know and
need to know, how age impacts learning, and misconceptions commonly
observed throughout development. This knowledge allows for the design
of more effective curricula and technologies, and provides a lens through
which to evaluate educational technologies. In this vein, it is also important
to understand what specific aspect of children’s mathematical knowledge
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an intervention addresses. Clear standards help separate what has been
addressed from what still needs to be addressed. The hope is that current
and future educators can use this knowledge to make informed decisions
regarding the appropriateness of interventions.

Table 1.7 presents the chapter’s key conclusions and policy take-aways

for policymakers.

TABLE 1.7

KEY CONCLUSIONS AND RECOMMENDATIONS

Conclusion

Access to education technologies
is not enough; teachers need
knowledge of how technologies
can be used to evaluate and
support children’s mathematical
development.

The learning goals that are
typical in Latin America and the
Caribbean are often content-
rather than skills-based, and lack
teaching goals.

Mathematics is often taught and
learned as a set of rules to be
memorized, sometimes leading to
technologies that teach children
the correct answers in the short
term (devoid of understanding),
resulting in student confusion and
alienation in the long term.

Girls and students from minority
backgrounds often have
stereotypes about being poor at
mathematics. This may lead them
to perform below their ability.

A related problem is that boys
may monopolize the use of new
technologies.

Policy Implication or Recommendation

Teacher training in the use of math
education technologies must focus

on their application in the classroom

to reflect the knowledge that children
already have so as to appropriately build
their skills, respond to their anxieties,
and foster their thinking.

To evaluate the use of technologies in
mathematics instruction, education
systems must define learning goals that
go beyond content to measure skills
(e.g., specific number or spatial skills) as
well as theory-based practice standards
with goals for student behaviors and
approaches to mathematics.

Technology that is promoted must build
on children’s abilities by making explicit
connections between mathematical
concepts and children’s intuitions

(e.g., spatial representations), avoiding
unnecessary distractions, and facilitating
concept comparisons.

School systems must train teachers in
the use of measures to ensure equal and
fair participation by all students. In a
class that uses education technologies,
tasks must be structured to ensure
equal access to tools such as computers,
software, and robots.
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CHAPTER /4

A Learning Path Framework

for Balancing Mathematics
Education: Teaching and Learning
for Understanding and Fluency

Aki Murata (University of Florida), Karen C. Fuson (Northwestern University),
and Dor Abrahamson (University of California, Berkeley)

n an urban school in South America, a young elementary school teacher,

Catalina, is teaching her second grade students how to add two-digit

numbers. Catalina was never a good math student herself, and she feels
awkward and uncomfortable teaching the subject. As she tries to go over
the procedure, her students ask:

éPor qué funciona de esta manera? (Why does it work this way?)

Catalina feels lost, not knowing how to explain. However, she notices some
students trying to help each other, using blocks and drawings, to show the
meaning of the regrouping conceptually. As Catalina stands back and listens
for a while, she feels a new sense of excitement that she never felt before as
a teacher. She feels proud of her students for trying, and she wants to help
them. She joins the student discussion of different methods and, at certain
moments, can actually provide explanations that clarify students’ confusion.
Catalina feels empowered for the first time as a mathematics teacher. She
remembers that in a recent professional development session, her colleagues
had discussed a different way of teaching called “balanced teaching,” which
starts with students sharing ideas. The teacher then facilitates learning by
helping students make connections between their ideas and math concepts
using math drawings. Catalina decides that she will talk to her colleagues
during the planning period that week to learn more about it.
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A New Way Forward

Countries around the world are trying to help as many classrooms as pos-
sible prepare students for the math needs of the 21st century. The old
focus on memorizing and copying what the teacher shows is no longer
good enough. Students must make sense of and understand what they
are doing because the math needs of the workplace are changing. Stu-
dents need to be prepared for future changes, too. In recent years, three
U.S. National Research Council committees have studied research from
around the world and summarized the findings: NRC (2009), Donovan and
Bransford (2005), and Kilpatrick, Swafford, and Findell (2001).' This chap-
ter provides a framework that summarizes these international research
results, focusing especially on how students think about math ideas. The
summary also draws on decades of experience with a similar framework
in Japan and on two decades of classroom-based research in English-
and Spanish-speaking classrooms in the United States (Fuson and Murata
2007; Fuson, Murata, and Abrahamson 2014; Murata and Fuson 2006,
2016; Murata 2008). The research for the framework comes from all over
the world, including Latin America and the Caribbean (LAC). Much of the
research is about student learning and teaching of specific math topics,
and it emphasizes sense-making and explaining as crucial for 21st century
goals that balance understanding and fluency. This “balanced teaching”
approach is related to several models of teaching that emphasize learn-
ing trajectories (Clements and Sarama 2004, 2014), task sequences
(Simon, Placa, and Avitzur 2016), “math talk” in the classroom (Yackel and
Cobb 1996; Hufferd-Ackles, Fuson, and Sherin 2004, 2015; Murata et al.
2017), linking ideas (Alibali et al. 2013), embodied thinking (Abrahamson
2014), visual learning (Mason 1989), productive failure (Kapur 2014), and
discovery-based learning (Abrahamson and Kapur 2018). This frame-
work can guide national decisions about teaching and learning, including
choices regarding what kinds of technology to use, and how.

This chapter first outlines the balanced teaching framework, then
explains its central aspects in more depth and gives examples using
fractions. The chapter next describes and illustrates the importance of
drawing, using the examples of problem-solving with key math concepts,
before briefly discussing issues of supporting students and teachers with

' This chapter is based on the research summarized in the National Research Council

reports, but the examples given are relevant to Latin American and Caribbean class-
rooms and uses of technology.
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balanced teaching/learning. The chapter concludes by discussing some
uses of technology drawn from the framework.

The Balanced Teaching Framework: Proficiency for All

Box 2.1 outlines the balanced teaching framework. At the top of the table
is the high-level 21st century goal for all students presented and discussed
in the National Research Council report, Adding It Up: Helping Children
Learn Mathematics. (Kilpatrick, Swafford, and Findell 2001). This goal can
focus changes in teaching because it broadens typical goals for teach-
ing. Its aim is to nurture resourceful and self-regulating problem-solvers
using five strands of mathematical proficiency: conceptual understanding,
procedural fluency, strategic competence, adaptive reasoning, and pro-
ductive disposition. These five strands guided subsequent reform efforts
in the United States and Canada, for example in the writing of the 2010
U.S. Common Core State Standards (CCSS Initiative 2010). The strands
of conceptual understanding and procedural fluency are balanced in the
framework, as the teacher helps students develop and then move from
conceptual understanding to fluency. Strategic competence and adap-
tive reasoning are two vital aspects of problem-solving and reasoning.
The fifth strand, productive disposition, involves a positive self-image as
a problem-solver, characterized by Dweck as a “growth mindset” (Dweck
2010; Blackwell, Trzesniewski, and Dweck 2007). All of these strands
require students to develop their self-regulating capacity as they become
more aware of and can take more control of their math thinking and
problem-solving.

This high-level goal involves Principle 3 (The importance of self-mon-
itoring) from the National Research Council Report How Students Learn
(Donovan and Bransford 2005). The report organizes its research sum-
maries around three principles that are used in the three-phase, balanced
teaching model summarized in Box 2.1. These principles are stated where
they appear in Box 2.1 so that readers who wish to find research about
them in the report can do so. Box 2.1 also draws on research-based recom-
mendations about teaching and learning made by the main organization
of researchers and teachers in the United States, the National Council of
Teachers of Mathematics (NCTM), inits report Principles and Standard's for
School Mathematics (NCTM 2000). This report identifies five process stan-
dards for teaching: problem-solving, reasoning and proof, communication,
connections, and representations. These process standards are identified
in Box 2.1 where they are relevant. Later research related to these process
standards is discussed in NCTM (2014).

A LEARNING PATH FRAMEWORK FOR BALANCING MATHEMATICS EDUCATION
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BOX 2.1 THE THREE-PHASE BALANCED TEACHING MODEL

The high-level goal for the balanced teaching model is to build resourceful,
self-regulating problem-solvers (Principle 3 from How Students Learn: The
importance of self-monitoring) by continually intertwining the five strands of
mathematical proficiency: conceptual understanding, procedural fluency, stra-
tegic competence, adaptive reasoning, and productive disposition (Kilpatrick,
Swafford, and Findell 2001).

How? Create a Year-long, Nurturing, Math-Talk Community

*  The teacher orchestrates collaborative instructional conversations focused
on the mathematical thinking of classroom members (Principle 1 from How
Students Learn: Engaging prior understandings; and the Process Standards
on Problem Solving, Reasoning and Proof, and Communication of the Na-
tional Council of Teachers of Mathematics (NCTM).

*  Students and teachers use responsive means of assistance that facilitate
meaningful learning and teaching by all; the teachers seek to engage,
involve, manage, and coach (model, clarify, instruct/explain, question, and
give feedback).

Use Three Balanced Teaching Phases for Each Math Topic

The teacher and students use and relate (“interform”) coherent mathematical
situations, pedagogical forms, and cultural mathematical forms (the NCTM’s
Process Standards on Connections, Representations, and Communication) as
they move through these phases.

Phase 1—Guided Introducing

*  Supported by the coherent pedagogical forms, the teacher elicits and the
class briefly works with the understanding that students bring to a topic
(Principle 1 from How Students Learn: Engaging prior understanding).

. Teacher and students value and discuss student ideas and methods (which
allows teachers to know how students approach the topic).

*  Teacher identifies different levels of solution methods used by students
and typical errors and ensures that these are seen and discussed by the
class.

e Student methods may be basic and slow, contain errors, or be Phase 2
methods (see below).

Phase 2—Learning Unfolding (In-depth Meaning-making Phase)

. The teacher helps students form emergent networks of forms-in-action
(Principle 2 from How Students Learn: The essential role of factual knowl-
edge and conceptual frameworks in understanding).

*  Explanations of methods and of mathematical issues continue to use math
drawings and other pedagogical supports (external forms) to stimulate
correct relating (interforming) of the forms.

(continued on next page)
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BOX 2.1 THE THREE-PHASE BALANCED TEACHING MODEL (continued)

. Teacher focuses on or introduces mathematically desirable and accessible
methods.

. Erroneous methods are analyzed and corrected with explanations.

. Advantages and disadvantages of various methods, including the current
common method, are discussed so that central mathematical aspects of
the topic become explicit.

. Student methods become predominantly mathematically desirable and ac-
cessible methods. Errors decrease. Students may also use mathematically
desirable and not accessible methods.

Phase 3—Kneading Knowledge (Fluency)

*  The teacher helps students gain fluency with desired methods.

e Students may choose a method. Fluency includes being able to explain the
method.

*  Some reflection and explaining will still continue (kneading the individual
internal forms).

e Students stop making math drawings when they do not need them.

*  Each student fast-forms one mathematically desirable method; many
students interform more than one method.

Source: Prepared by the authors.

The second part of the balanced teaching framework (how to meet
the goal) describes how a teacher can increase the understanding levels
of all students in the classroom by creating a year-long, nurturing “math
talk” community focused on how students make and discuss mathematical
meanings.2 To do this, the teacher orchestrates collaborative instructional
conversations (math talk) focused on the math thinking of students. Visual
models (e.g., math drawings) are introduced to support the thinking of stu-
dents and the teacher. The teacher can explain concepts, but the students
are also encouraged to explain their thinking and discuss it with other stu-
dents. Explanations that use visual models (such as drawings) are vital to
the sense-making and understanding of all participants. The math talk also
helps students use math language and notation.

The third part of the balanced teaching framework is a three-phase
model of how a teacher supports student understanding and fluency in

2 As explained by the National Council of Teachers of Mathematics, “math talk” is

an instructional conversation directed by the teacher, but with as much student
engagement as possible. The idea behind it is that if students take time to explain
their mathematical thinking, this will increase their understanding.
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each new math topic. The bottom part of Box 2.1 describes central aspects
of each phase. Phase 1, “Guided Introducing,” is emphasized in reform
approaches that focus on eliciting and discussing children’s invented
methods. Traditional curricula emphasize Phase 3, “Kneading Knowledge
(fluency),” and focus on fluency development. The new, important part of
the model is Phase 2, “Learning Unfolding.” This in-depth meaning-making
phase connects Phases 1 and 3 and provides opportunities for deep and
ambitious learning. As students compare, contrast, and analyze different
methods in Phase 2, core math concepts can be lifted up from the
problem contexts or specific methods and connected together. Coherent
facilitation of mathematically desirable and accessible (MD&A) methods
via math drawings in classrooms helps students express their ideas and
ultimately fosters individual learning. The general word “form” is used
in several places in the box (pedagogical forms, cultural mathematical
forms, interform, internal forms-in-action using external forms, individual
internal forms) instead of the range of other terms (teaching materials or
drawings, mathematical symbols or words, relate, mental representations
using external materials or actions or words or written symbols, mental
representations or actions) to emphasize the relatedness of all of these
different internal and external structures and how mathematical thinking
involves developing and using increasingly complex and accurate forms.
Phase 2 is the heart of this process, as the class focuses on and dis-
cusses MD&A methods with the help of visual models.3 MD&As are general
and can be abstract and conceptually nontransparent. If a teacher only
presents and explains information without any visual models, it can be
very confusing for students. In second grade classrooms, students may
approach a two-digit addition problem (e.g., 68 + 76) by using drawings or
“tens and ones” blocks. Research in many countries underlines the impor-
tance of math drawings (visual models, diagrams) as pedagogical forms
to support individual thinking, problem-solving, and instructional con-
versations (math talk). Math drawings facilitate problem-solving because
students can relate steps in the math drawing to steps with math sym-
bols and can label the drawing to relate to the problem situation or to
math concepts (e.g., hundreds and tens). These drawings can help bridge
problem situations with mathematical solutions through mathematizing

> Visual models are the range of displays—including images with figurative, diagram-

matic, and symbolical elements—that teachers, students, math programs, or math
technologies create to show the meaning of a mathematical concept. Visual models can
be physical things, but this chapter emphasizes the importance of diagrams and math
drawings as visual supports for teaching and learning. All of these terms for visual mod-
els are used in this chapter because they all have slightly different meanings in context.
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(focusing on the math structure). Math drawings assist math talk because
they can be put on the board or be projected on a screen for all to see
and they leave a trace of all steps in the thought process, so each step can
be explained later. Math drawings are inexpensive, easy to manage, and
remain after the problem is solved to support reflection and further expla-
nation. Teachers can collect pages containing them and reflect on these as
windows into the minds of students outside of class time. Many East Asian
elementary math programs have a history of using diagrams, as do some
other countries around the world. Math drawings initially can show all of
the objects and later be simplified into diagrams with numbers in them.
The drawings of concrete objects may be helpful for very young children
or for some special-needs children, but for many math topics, students
need only use simplified diagrams and numbers.

It is essential for any math teaching to involve all three phases. Depend-
ing on the level of complexity of the mathematics concept, these three
phases may occur over several lessons, or they may occur in one lesson.
Throughout the phases, it is important for the teacher to maintain high
expectations of students, accept the different ideas and varied learning
paths students may take, and understand that every student will come
to use a mathematically desirable method in time with varied degrees
of fluency. These three phases and their relationships are summarized
in Figure 2.1. The double arrows connecting and showing how students

FIGURE 2.1
MATH TALK COMMUNITY: EVERYONE FOCUSES ON MAKING SENSE OF
MATH STRUCTURES USING DRAWINGS TO SUPPORT EXPLANATIONS

Math Talk Community
Bridging for teachers
and students by coherent Phase 3. Formal math methods, Learning
learning supports fluency Path

S

Math Sense-Making I I Math Drawings
Math Structure Math Explaining

Phase 2. Research-based, mathematical, desirable
and accesible methods,
understanding and growing fluency

Math Sense-Making I I Math Drawings
Math Structure Math Explaining

Phase 1. Student-generated methods,
exploring and growing understanding

Source: Prepared by the authors.
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proceed between phases summarize what teachers need to emphasize
in the classroom—making sense of math structures using math drawings
to support math explaining. Research concerning teaching aspects of the
crucial Phases 1 and 2 are briefly summarized here.* Even when practic-
ing solution methods in Phase 3, students can fall back to Phase 2 and to
drawings to help them remember a method or fix an error.

After all three phases are completed for a given topic, it is important
to maintain fluency by engaging in practice distributed over time and
also to relate the concepts to new 