TODOS LIVE

A Visual Approach to Proof: Supporting *ALL* learners By Melissa Hosten

The ideas, <u>most</u> slides, and most handouts come from ProofBlocks: A Visual Approach to Logic and Proof By Jenni Dirksen & Jinna Hwang

www.proofblocks.com

The Plan

- Why is proof hard for ELLs?
- Using Conditional Statements
- Learning the support
- Trying it yourself
- What are the benefits?

What makes proof tough?

Given: ΔPRF is equilateral

What makes it hard?

What if you started with the idea that not all students **see** three triangles?

Before even getting to the postulates, theorems, givens, and format--**HOW** can we support our visual or kinesthetic learner's and our ELL's ability to see <u>all</u> of the figures?

Let's go on a triangle hunt!

Can this work with midpoints and bisectors?

Conditional Statements

- Theorem: The sum of the interior angles of a triangle is 180°.
- Let's rewrite this as a conditional statement:
- At home, rewrite this as a conditional statement.
- Use your control bar to raise your hand when you are done.
- You probably wrote something like, If a figure is a triangle, then the sum of the interior angles is 180°

Conditional Statements

- If a figure is a triangle, then the sum of the interior angles is 180°.
- What is the input?--respond by chat bar
- What is the output? --respond by chat bar
- Can we draw a picture of the input? The output?--Draw this at home on two opposite sides of a strip of paper.

Conditional statements

Did it look similar to the one below?

- Labeling is important, so if you missed labeling your angles and writing the equation, please go ahead and add this to your picture.
- If you want to try this with students or colleagues, you may want to use the <u>Basic Theorems and Postulates handout</u> and the conditional block handout.

Conditional Statements

Now, write the theorem in the center of the strip of paper.

- How does this support understanding the theorem?
- Take a minute and look at the proofblocks including HL.
- What observations do you have? Share them in the chat bar.

An option and an opportunity

Proofblocks turn theorems, postulates, and definitions into *tools*, **manipulatives**.

The tools have a <u>visual</u> cue, <u>symbolic</u> information, and the <u>text</u> of the theorem, postulate, or definition once students make their set.

This supports students' **use** of theorems, postulates, and definitions as well as students' **understanding** that proof is a structured connection of inputs and outputs.

It really helps ELLs to make a picture on the block!

Definitions

H is the midpoint of MT

Definitions

H is the midpoint of MT

Connecting Blocks

Connecting Blocks

Definitions

$\overline{\mathsf{MT}} \perp \overline{\mathsf{AH}}$

Definitions

Connecting Blocks

 $\angle AHM \cong \angle AHT$

Connecting Blocks

 $\angle AHM \cong \angle AHT$

Given: MT [⊥] AH

H is the midpoint of MT

Prove: AM ≅ AT

Given: MT [⊥] AH

H is the midpoint of MT

Prove: AM ≅ AT

Given: MT \perp AH

H is the midpoint of MT

Prove AM ≅ AT

Corresponding Parts of Congruent Triangles are Congruent

I have found color pictures work well with this block.

Corresponding parts of congruent triangles are congruent

Given: $\overline{MT} \perp \overline{AH}$

H is the midpoint of MT

Prove: AM ≅ AT

Try It Yourself!

Given: O is the midpoint of BK

 $^{<}$ B \cong < K

Did you find the Definition of a Midpoint block?

Did you find the vertical angles theorem?

Did you use ASA?

K Did you use CPCTC?

Did you mark vertical angles as a "P"?

Proof Blocks in Action

Benefits

- Theorems, postulates, and definitions become manipulatives
- Student focused
- Visual, kinesthetic, and ELL friendly
- Easily checked logic
- Flexible: Front to back, back to front, middle to ends
- An unexpected benefit is that students are able to discern information from a picture and information from given statements as different (not apparent in traditional instruction).

Questions?

I will stay and answer your questions, send them via your chat bar.

Thank you all for joining me this evening!

Thank you to Jenni Dirksen & Jinna Hwang for their creation of proofblocks!

Their materials can be found at:

www.proofblocks.com