TODOS LIVE A Visual Approach to Proof: Supporting ALL learners By Melissa Hosten

The ideas, most slides, and most handouts come from ProofBlocks: A Visual Approach to Logic and Proof By Jenni Dirksen \& Jinna Hwang www.proofblocks.com

The Plan

Why is proof hard for ELLs?
Using Conditional Statements Learning the support
Trying it yourself
What are the benefits?

What makes proof tough?

Why is this hard for students?
Given: $\triangle \mathrm{PRF}$ is equilateral

What makes it hard?

What if you started with the idea that not all students see three triangles?
Before even getting to the postulates, theorems, givens, and format--HOW can we support our visual or kinesthetic learner's and our ELL's ability to see all of the figures?

Let' s go on a triangle hunt!

Can this work with midpoints and bisectors?

Conditional Statements

Theorem: The sum of the interior angles of a triangle is 180°. Let' s rewrite this as a conditional statement: At home, rewrite this as a conditional statement.
Use your control bar to raise your hand when you are done.
You probably wrote something like, If a figure is a triangle, then the sum of the interior angles is 180°

Conditional Statements

If a figure is a triangle, then the sum of the interior angles is 180°.
What is the input?--respond by chat bar What is the output? --respond by chat bar
Can we draw a picture of the input? The output?--Draw this at home on two opposite sides of a strip of paper.

Conditional statements

Did it look similar to the one below?

$$
A+B+C=180^{\circ}
$$

Labeling is important, so if you missed labeling your angles and writing the equation, please go ahead and add this to your picture.

- If you want to try this with students or colleagues, you may want to use the Basic Theorems and Postullates handout and the

Conditional Statements

Now, write the theorem in the center of the strip of paper.

How does this support understanding the theorem? Take a minute and look at the proofblocks including HL .
What observations do you have? Share them in the chat bar.

An option and an opportunity

Proofblocks turn theorems, postulates, and definitions into tools, manipulatives.

The tools have a visual cue, symbolic information, and the text of the theorem, postulate, or definition once students make their set.

This supports students' use of theorems, postulates, and definitions as well as students' understanding that proof is a
 structured connection of inputs and outputs.

Proof Blocks

First we will place the information on the picture as we did in the marking definitions activity.

Proof Blocks

Proof Blocks

Proof Blocks

It really helps ELLs to make a picture on the block!

Proof Blocks

Proof Blocks

Proof Blocks

Proof Blocks

Definitions

H is the midpoint of $\overline{\mathrm{MT}}$

Definitions

H is the midpoint of $\overline{\mathrm{MT}}$

Connecting Blocks

Connecting Blocks

$\overline{\mathbf{M H}} \cong \overline{\mathbf{H T}}$

Proof Blocks

Definitions

$\overline{\mathbf{M T}} \perp \overline{\mathbf{A H}}$

Definitions

Connecting Blocks

$\angle \mathrm{AHM} \cong \angle \mathrm{AHT}$

Connecting Blocks

$\angle \mathrm{AHM} \cong \angle \mathrm{AHT}$

Proof Blocks

Proof Blocks

Proof Blocks

What block looks like this statement?

Where did we learn this?

Proof Blocks

Proof Blocks

An Extension

Given: $\overline{\mathbf{M T}} \perp \overline{\mathbf{A H}}$
H is the midpoint of $\overline{\mathrm{MT}}$
Prove: $\overline{\mathbf{A M}} \cong \overline{\mathbf{A T}}$

An Extension

Given: $\overline{\mathbf{M T}} \perp \overline{\mathbf{A H}}$
H is the midpoint of $\overline{\mathrm{MT}}$
Prove $\widehat{\mathbf{A M}} \cong \widehat{\mathbf{A T}}$

An Extension

Given: $\overline{\mathbf{M T}} \perp \overline{\mathbf{A H}}$

H is the midpoint of MT

Prove $\overline{\mathbf{A M}} \cong \overline{\mathbf{A T}}$

Corresponding Parts of
Congruent Triangles
are Congruent

An Extension

I have found color pictures work well with this block.

Corresponding parts of congruent triangles are congruent

An Extension

Given: $\overline{\text { MT }} \perp \overline{\text { AH }}$

H is the midpoint of $M T$

Prove: $\overline{\mathbf{A M}} \cong \overline{\mathbf{A T}}$

Try It Yourself!

Proof Blocks in Action

Benefits

Theorems, postulates, and definitions become manipulatives
Student focused
Visual, kinesthetic, and ELL friendly
Easily checked logic
Flexible: Front to back, back to front, middle to ends
An unexpected benefit is that students are able to discern information from a picture and information from given statements as different (not apparent in traditional instruction).

Questions?

I will stay and answer your questions, send them via your chat bar.
Thank you all for joining me this evening!

Thank you to Jenni Dirksen \& Jinna Hwang for their creation of proofblocks!
Their materials can be found at: www.proofblocks.com

